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ABSTRACT

In a variety of aeronautical applications, the flow around conical bodies at incidence is

of interest. Such applications include, but are not limited to, highly maneuverable aircraft

with delta wings, the aerospace plane and nose portions of spike inlets.

For such conical bodies, starting at moderate angles of attack, the flow separates from

the lee side, forming two vortices. Although the vortex lift contribution is highly desirable,

as the angle of attack increases, the vortex system becomes asymmetric, and eventually

the vortices breakdown. This causes problems with stability in all directions. Thus, some

control of the separation process is necessary if the vortex lift is to be exploited at higher

angles of attack.

The theoretical model which is used in this analysis has three parts. First, the "single

line-vortex" model is used within the framework of "slender body theory", to compute the

outer inviscid field for specified separation lines. Next, the three-dimensional boundary

layer is represented by a momentum equation for the cross-flow, analogous to that for a

plane boundary layer ; a von-Karman/PobAhausen approximation is applied to solve this

equation. The cross-flow separation for both laminar and turbulent layers is determined by

matching the pressure at the upper and lower separation points. This iterative procedure

yields a unique solution for the separation lines and consequently for the positions of the

vortices and the vortex lift on the body.

In the last part, control of separation is achieved by blowing tangentially from a slot

located along a cone generator. It is found that for very smaU blowing coefficients, the

separation can be postponed or suppressed completely (i.e., separation is moved all the way

to the leeward generator), in which case the results from R.T.Jones's theory are recovered.
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NOMENCLATURE

English letter symbols :

a

b

bj

C

C2

CL

CLV

c.
E

F(x*, y', z')

hl,2,3

//2

Z

k

K

K'

K,
l

L

M

n

N

characteristic width of the body

characteristic thickness of the body

half width of the wall jet

= v_ - b2, geometric parameter of the ellipse

integration constant

friction coefficient defined by eq(A5.1t)

wall friction coefficient for zero pressure gradient defined by eq(10.20)

total lift coefficient defined by eq(3.5)

vortex lift coefficient

pressure coefficient defined by eqs(3.2) and (10.21)

blowing coefficient defined by eq(10.16)

exponential function used in boundary layer analysis

function defined by eq(2.3)

metric (or Lame) coefficients defined in eqs(8.1)

boundary layer shape factor

denotes the imaginary part of the complex quantity involved

-- F/2_', vortex strength

(also used as a constant)

spreading rate of the wall jet (constant)

constant used in the wall jet analysis

second pressure gradient parameter defined by eq(A5.14)

characteristic dimension in the x - direction

lift force

Mach number

exponent in the boundary layer growth eq(8.13)

(also exponent in the wall jet analysis)

normal force
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P

q

R

Re

S

SC

U

U

D

V

Un

W

X,y,Z

X*, y*, Z*

Z

static pressure

dynamic pressure

=" (a + b)/2, local radius of the circular cone

denotes the real part of the complex quantity involved

Reynolds number

cross-sectional area of the cone

separation criterion (function)

velocity component along the x or _ - axes

dimensionless velocity along the x or _ - axes

velocity component along the y or _? - axes

dimensionless velocity along the rI - axis

velocity normal to the line vortex

velocity component along z or ( - axes

Cartesian coordinates fixed at the apex of the wing

dimensionless Cartesian coordinates

complex variable in the horizontal flat plate plane

Greek letter symbols :

a angle of attack

_, vortex sheet strength

F circulation of the line vortex

6 wing semi-apex angle in the (x, z) plane

(also boundary layer thickness)

6y displacement of the separation point

from the leading edge along the y - axis

6z displacement of the separation point

from the leading edge along the z - axis

_I displacement thickness in the direction of a cone generator

62 displacement thickness in the circumferential direction

e eddy viscosity

¢ cone semi-apex angle in the (z, y) plane
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7/

0

011

022

012,21

A

An

V

O"

T

ro

qo

X

X,

XsI,s2

¢

complex variable in the vertical flat-plate plane

(also coordinate in the direction normal to the surface)

coordinate along the circumference of the cross-section

complex variable in the circle plane

[also angular coordinate (windward point taken as zero)]

(also boundary layer momentum thickness)

momentum thickness in the longitudinal direction

momentum thickness in the circumferential direction

momentum thicknesses due to the mutual effect

of the longitudinal and circumferential flows

dimensionless coordinate across the boundary layer

first pressure gradient parameter defined by eq(A5.6)

molecular viscosity

kinematic viscosity

coordinate along a cone generator

3.14159...

fluid density

complex variable in the ellipse plane

wall shear stress

wall shear stress with zero pressure gradient

disturbance velocity potential

complex potential

complex potential due to a line source distribution

components of Xo defined by eqs(6.3) and (6.4)

disturbance stream function

Subscripts :

BL

cf

e

J

L

refers to the boundary layer

refers to the cross-flow plane

refers to the non-viscous external flow

refers to the wall jet

refers to the laminar boundary layer



rn

s

T

tr

O0

0

1

refers to the position in the jet profile where velocity is maximum

refers to the separation point

refers to the turbulent boundary layer

refers to the transition point in the boundary layer

refers to the undisturbed flow field

refers to the solution for leading edge separation

refers to the right vortex position

Superscripts :

# complex conjugate of a

Abbreviations :

BL

LE

SPLS

SPUS

boundary layer

leading edge

separation point on the lower surface

separation point on the upper surface
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I. PROLOGUE

1.1 Motivation

In a variety of aeronautical as well as aerospace applications, the flow around bodies

of general conical shape at high angle of attack needs to be studied. Such applications

include, but are not limited to, highly maneuverable aircraft with delta wings such as the

F-5F in flg(1.1), the aerospace plane and the nose portions of spike inlets.

The class of shapes of current interest may be generalized as conical bodies of various

cross-sections. For example, the nose portion of the fuselage of the F-5F can be approxi-

mated by a circular cone, while the rear portion, being thinner and flatter, can be treated

as a thin elliptical cone. The advantage of a semi-infinite cone considered here is the

simple geometry and the assumption of conical flow, both of which simplify the analysis

significantly.

For such conical bodies, even at small to moderate angles of attack, the flow separates

from the lee side. From this separation, fluid with high vorticity is convected upwards,

away from the body surface, so that the resulting flow pattern is quite different from that

of attached flow in which the vorticity is only appreciable in the boundary layer.

In general, the flow pattern over a slender conical body goes through the following

stages as the angle of attack increases :

(i) At zero angle of attack the flow is axisymmetric.

(ii) At very small angles of attack (0 ° < _x < 6 °) the flow is attached everywhere.

(iii) At small angles of attack (6 ° < _ < 20 °) the flow first separates and a symmetric,

steady pair of vortices exists.
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(iv) At moderateanglesof attack (20° < a _< 45 °) the symmetric vortex system yields to

an asymmetric steady one (fig(1.1)), with two or more vortex cores.

(v) At large angles of attack (45 ° < a _< 70 °) the asymmetric vortex system becomes

unsteady and the vortices change locations randomly with time.

(vi) As c_ ---, 90 ° the vortices become highly mixed and form a turbulent wake (end portions

of vortices in fig(1.1)).

The present work is concerned with stage (iii) and only with the conical part of the

vortices shown in fig(1.1). The numerical ranges for the angle of at tack given in parentheses,

although representative, are by no means absolute, since they have been determined from

experiments with specific shapes, Reynolds numbers and other characteristics.

Figure(1.2) shows the vortex formation over the leading edges of a slender delta wing.

For highly swept-back configurations, usually a shear layer separates from each of two

cone generators, one on each side, which roll up into a pair of vortices. These primary

vortices cause additional lift to be generated on the lee side surface. The steep pressure

gradient between the minimum of pressure and the primary separation line causes a new

flow .separation, which usually takes the form of a small secondary vortex. The effect of

these secondary vortices on the lift is usually small.

The contribution of vortex lift in the low range of incidence is highly desirable. As

the angle of attack increases, however, and the vortex system becomes first asymmetric,

then unstable and uncontrollable, a large dependance on vortex lift may cause serious

problems with directional, rolling and longitudinal stability. Therefore, if the formation of

the vortices could somehow be enhanced or suppressed as necessary, controlled flow could

be extended to higher angles of attack.

The location and the strength of the vortices and, as a consequence, the vortex lift all

depend on the location of the separation lines (as will be shown in later chapters). This
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leads to the idea of controlling the location of separation as a means of controlling the

vortex lift.

1.2 Objective

The purpose of the present work is three-fold :

(i) First, to explore the influence of the position of separation on the vortex parameters

(location, strength, lift). This is done through an inviscid analysis of the outer field for

arbitrarily chosen separation lines.

(ii) Second, to determine uniquely the separation line locations through a boundary layer

(viscous) analysis. Thus, the ambiguity introduced in the first step is removed.

(iii) Third, to control boundary layer separation by wall jet blowing. This also requires

a viscous analysis and is based on the idea that a thin high-velocity layer of fluid ejected

tangentially to the surface of the body reenergizes the boundary layer and makes it less

susceptible to separation.

As was mentioned in the previous section, at high angles of attack (typical of highly

maneuverable aircraft), the problem is not to get lift (since a large component of the thrust

produced by the engines is vertical), but rather, to get rid of any asymmetries present in

the vortex system. Thus, some reduction in vortex lift as a result of blowing is justified.

An alternate way to stabilize the vortices would be blowing from the apex along the

axes of the vortices (brute force approach). However, as will be shown in later chapters,

controlling the conditions which produce these vortices (i.e., boundary layer separation),

is a more effective way to achieve our goal. This is indicated by the fact that very little

tangential blowing produces very large changes in the vortex system.



1.3 Outline

In chapter 2 a summary of experimental and previous theoretical work is given, and

a comparison is made of the various models currently in use for flows over conical bodies

at incidence. The choice of the "single line-vortex" model as well as the use of "slender

body theory" and the assumption of conical flow are also discussed. Finally, a conformal

mapping sequence which allows simple transformations of various cross-section shapes is

shown.

In chapter 3 an account is given of the Jones model (ref.13) for a flat delta wing at

incidence with attached flow. This is the most basic of all the models and provides the

linear lift dependence on a. In chapter 4 the Brown and Michael solution (ref.19) for

the separated flow past a flat delta wing is discussed. The separation is assumed to take

place along the sharp leading edges. This is the simplest model from which the vortical

(non-linear with c_) contribution to the lift can be determined. In chapter 5 the influence

on the flow geometry and the lift as the separation lines are moved inwards towards the

leeward generator is determined. For a sharp leading edge this results in a singularity

along the leading edges. In chapter 6 the singularity is removed by considering rounded

leading edges (elliptical cross-section). In chapter 7 the inviscid analysis is extented to

cones of circular cross-sections and compared with the results of Bryson (ref.20), but for

various locations of the separation lines.

In chapter 8 the three-dimensional boundary layer on the circular cone is solved by

an extension of the Karman/Pohlhausen integral method to conical flow. In chapter 9

an iterative viscous/inviscid interaction scheme is introduced which allows the prediction

of the separation lines on the cone. Comparison with observed separation lines from

experiments is also made. In chapter 10 tangential blowing into the boundary layer is

introduced as a means of controlling the position of the separation lines and ultimately

4



the vortex lift. Finally in chapter 11 the limitations of the theory are discussed,the main

conclusionsare presentedand suggestionsfor further researcharegiven.
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2. INTRODUCTION

2.1 Previous Theoretical Work

The fully attached flow past slender delta wings at incidence was first modelled by

Jones (1946, ref.13), following earlier work with similar results by Munk (1924, ref.11)

and Tsien (1938, ref.12). A little later Ward (1948, ref.14) completed the picture of the

"slender body theory for attached flow" which was subsequently reviewed and extended

by Adams and Sears (1953, ref.15).

The three-dimensional separated flow past inclined bodies is currently represented by

three well-established inviscid models which are described below (fig(2.1)).

The first model is the "rolled-up core" established in 1957 by Mangler and Smith

(ref.28). In this model, the inner turns of the rolled-up vortex sheet are represented by a

single line-vortex, while a few turns on the outside of the spiral are represented explicitly

in a numerical treatment (fig(2.1a)).

The second model is the "multiple fine-vortex" established in 1967 by Sacks, Lundberg

and Hanson (ref.22) and it is derived in the following manner. If on the vortex sheet that

springs from the leading edge of the wing, lines are drawn along which the circulation is

constant (constant jump in the velocity potential _), these will also be streamlines of the

mean flow. Each such line starts at a point on the leading edge and follows a helical path

on the sheet, turning about the axis of the vortex as it proceeds downstream, thus dividing

the sheet up into ribbons. The circulation about each ribbon is the same along the whole

of its length and if it is allowed to condense into a line-vortex, a "multiple line-vortex"

model is obtained (fig(2.1b)).

The third one is the "single line-vortex" model. It is the simplest available model and
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preceded those described above. It was finalized by Brown and Michael in 1954 (ref.19)

following earlier work by Legendre (ref.16), Adams (ref.17) and Edwards (ref.18). In this

model, explicit representation of the outer turns of the spiral sheet is omitted, so that the

cut, which in the first model connects the end of the vortex sheet with the concentrated

vortex, now extends from the line-vortex to its associated separation line on the body

(fig(2.1c)). A more detailed comparison of the three models is undertaken in the next

section.

2.2 A Comparison between the Three Models of Vortex Separation

The arguments in this section follow those in refs.30 and 32 which should be consulted

if a more detailed discussion is desired.

The main advantage of the "rolled-up core" model of Mangler and Smith is, of course,

its greater realism in describing separation. Thus, it is not surprising that it gives the

closest approximation to the real flow in the infinite Reynolds number limit. Using the

panel-method terminology, the "rolled-up core" model constitutes a higher order method

than for example the "multiple line-vortex" model of Sacks et al, which means that it gives

greater accuracy for a similar number of elements and has therefore the ability to predict

a smooth behaviour of the flow. Thus, when many turns of a rolled-up configuration need

to be represented, the "rolled-up core" model is the best one to use.

Of course, there is a price for all these advantages, i.e., a greater programming effort.

The computing time is also greater for the same number of elements than that required

by the "multiple line-vortex" model. Also, the absence of any representation of secondary

separation, may become important in some applications.

The main advantage of the "multiple line-vortex" model is its flexibility, which makes it

possible to use one program to calculate very different vortex structures with only minimal

7



changes.The approximation of the real flow in the infinite Reynolds number limit is also

very good, and it is superior to the onegivenby the "single line-vortex" model but inferior

to the one of the "rolled-up core" model.

Unfortunately therearealsocomplexitiesassociatedwith the useof the "multiple line-

vortex" model. More computational storagespaceis required comparedwith the "rolled-

up core" model, and a large number of elementsis essentialfor accuracy. In addition, if

many turns of a "rolled-up" configuration needto be represented,the calculation will be

disrupted by vortices from adjacent turns pairing-off and rotating one around the other.

Also, since the integration of ordinary differential equations, which is required in the

streamwisedirection in order to find the shapesof the line-vortices, may be an unstable

process, the shapessometimesbecomechaotic. When they do not becomechaotic the

shapesturn out to be heliceswith their pitch becoming smaller as the streamline gets

closer to the axis of the vortex. It follows that a line-vortex starting near the apex of a

delta wing should follow a helix of very small pitch, and such a helix requiresvery many

elementsto describe it with any realism. As more vortices are introduced to increase

the accuracy of the solution, the closerto the apex the first one starts, thus making the

problem worse.

The main advantageof the "single line-vortex" model is its simplicity. This feature

makes it especially attractive for initial investigations, and its use usually reveals the

underlying structure of families of solutionsof the more realistic models. Simplicity is also

an important advantagewhen it becomesnecessaryto iterate the inviscid solution with a

boundary layer solution in order to determine the separation lines.

A disadvantagewhich arises with the useof the "single line-vortex" model is the

inability to find solutions for very small relative incidences(a/e). For example, for the

symmetric flow pasta circular coneBryson (ref.20) found no solutionswith the vortex close

to the separation line when(a/e) < 1.5csc8,, whereas solutions have been found with the

-8-



"rolled-up core" model. In addition, since the vortex system is represented only globally

in this model, the position of the vortices suffers in accuracy especially for asymmetric

configurations.

For the present work, the main purpose is to obtain a fast estimate of the velocity

and pressure fields around the body which, when combined with a boundary layer analysis

including the effects of blowing, will enable us to predict the separation lines. The "sin-

gle line-vortex" model seems adequate for this purpose and will serve to demonstrate an

approach that may be subsequently applied to the more elaborate models.

2.3 Previous Experimental Work

The experimental observations of separated flows on conical bodies, although limited,

offer some very useful guidelines for the solutions which foUow in the next chapters.

Jorgensen (1957, ref.34) was the first to test cones with elliptical cross-section. He

pointed out that there are distinct aerodynamic advantages to the use of elliptical cones,

namely, that with their major axis horizontal, they develop greater lift and have higher

lift-to-drag ratios than circular cones of the same fineness ratio and volume. However, his

"lift coefficient versus angle of attack curves" are all linear, probably because the range of

incidences tested was not high enough, so the vortex system either had not formed yet or

was still too weak to affect the lift significantly.

Rainbird, Crabbe and 3urewicz (1963, ref.35) experimented with circular cones in a

water tunnel, while Schindel and Chamberlain (ref.39), and Friberg (refs.36,37) at M.I.T.

tested circular and elliptic, two-dimensional and three-dimensional bodies. One of the

interesting points of their results is the discovery of a secondary vortex system, similar

to that shown in fig(1.2), above certain angles of attack. The observed positions of the

separation lines from their experiments will be used for comparison with the predictions
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of the presenttheory in chapter 9.

Finally, Wood and Roberts (ref.64) at StanfordUniversity showedthat it is possible

to control the vortex system by blowing tangentially from the leading edgeof a slender

wing, towards the leewardgenerator. Their workprovidesmuch of the motivation for the

presentanalysis.

2.4 Slender Body Theory

From the mathematical point of view, "slender body" theory" begins with the Prandtl-

Glauert equation

(1 2L 02_ 02_ 02_
- M_)_-_z 2 + 07+ _-z2 = 0

(2.1)

which is valid for supersonic as well as subsonic Mach numbers. Equation(2.1) may be

further approximated for slender elongated wings or bodies. It follows that, since the

geometrical properties of the body or wing vary only slowly in the x - direction, the

derivative 02_/0z 2 must also be small. This argument can be made more rigorous (ref.15)

by introducing dimensionless coordinates

x = Ix* (2.2a)

y = ay" (2.2b)

az*z = _.-.c)
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where I is a characteristic length and a is a characteristic width of the body. If a function

F is defined such that

(2.3)

then eq(2.1) becomes

a ) 02F 02F 02F(1-M£) _- Ox----_+ 0y----r+0-_r=0
(2.4)

so that for sui_ciently small values of the parameter (1 - M_)(a2/l 2) the first term can be

neglected. One thus obtains the Laplace equation for the cross-flow

(2.5)
+ = 0

However, the interpretation of slenderness is quite different for the various speed regimes.

For Moo > 1 "slender" means that the wing lies well within the Mach cone from the

apex. That was the reason why Ward (ref.14) limited his theory to pointed bodies and

wings. Relatively blunt bodies and wings may qualify as "slender" at low supersonic

speeds, whereas at hypersonic speeds eq(2.1) is not valid and the theory fails entirely for

most practical shape. For Moo < 1, on the other hand, the word "slender" becomes less

restrictive, although we must keep in mind that eq(2.1) is not valid in the transonic regime.

Since leading edge separation is essentially confined to highly swept wings, the application

of "slender body theory" seems appropriate.
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2.5 Remarks on the Assumption of "Conical Flow"

The term "conical flow" implies that there is a point in the flow field, called the vertex

of the flow, such that all physical quantities are constant along rays drawn from the vertex.

The simplest example is the inviscid supersonic flow past a circular cone at zero incidence,

with an attached shock.

Strictly speaking, the flow over a conical body must be supersonic everywhere for the

"conical flow" model to apply, since for subsonic flow the boundary conditions at infinity

cannot be satisfied by a conical flow field. Nonetheless it has been observed that the

subsonic flow past a slender conical body is approximately conical in a region downstream

of the apex and well upstream of the trailing edge. This is due to the fact that at relative

incidences (c_/s) sufficient to cause separation, the circumferential pressure gradients are

much larger than the axial pressure gradient caused by thickness and base effects. For a

more thorough discussion on the subject of "conical flow" ref.7 should be consulted.

The assumption of conical flow is facilitated in this model by two other assumptions.

First, that the cone is of infinite length, thus avoiding the trailing edge region where the

conicality assumption would break down. Second, the use of "slender body theory" which

does not distinguish between subsonic and supersonic regimes since the first term in the

Prandtl-Glauert equation is neglected, and there is no "upstream influence".

2.6 Conformal Mapping in the Cross-Plane

Figure(2.2) shows the various relations which transform the cross-section of the cone

from a flat plate (Brown and Michael solution), to an ellipse (Schindel solution) and finally

to a circle (Bryson solution). The flat plate is most easily solved when transformed so that

the vortex system is symmetrical with respect to a vertical plate. For the ellipse, the
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easiestway is by a transformation to a circle and application of the circle theorem, which

allows oneimmediately to write the complex potential in terms of the vortex system and

its image.

- 13-



1 A FLAT DELTA WING

WITH ATTACHED FLOW

3.1 The Flow Model

This chapter presents the Jones solution for a flat delta wing, since this will be the

departing as well as the destination point for the solutions which follow in the next chapters.

It is the departing point since it excludes separation, and it is also the destination point of a

separated configuration as the vortex system is being suppressed by shifting the separation

line from the leading edge inwards, toward the leeward generator of the wing. Although

only the flat delta wing is mentioned here, the lift coefficient based on the projected wing

area is exactly the same regardless of cross-section, within the framework of "slender body

theory without separation". The configuration of the model is shown in fig(3.1). The

flow pattern in any cross-plane is the familiar two-dimensional flow caused by a fiat plate

normal to a free stream with velocity u_a (fig(3.2)). However, the scale of the flow field

increases continually along the x - axis, and this fact gives rise to the three-dimensionality

of the problem. The potential function for the flow at the wing is given by

¢p -- _U_oLV/__ y2 (3.1)

where the positive sign is for the upper surface and the negative sign is for the lower

surface. From eq(3.1) it may be seen that the gradient of the potential (i.e., the velocity),

is singular at the leading edges (y = =l=a).
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3.2 Pressure Distribution

The pressure coefficient is defined as

- p - voo (3.2)
qoo

where qco is the free stream dynamic pressure. Following the analysis in ref. 13, the pressure

distribution in a cross-section at a distance z from the apex may be expressed as a function

of the relative incidence cr/e

whereas the difference in pressure between the upper and lower surfaces is

The pressure distribution from eq(3.3) has been plotted in fig(3.3). The singularity at the

leading edge is the result of an infinite suction there, as the flow tries to make a 180 ° turn

from the lower to the upper surface. In a realistic description of the flow such a singularity

cannot exist, and it is necessary to introduce a vortex sheet at the leading edge which

feeds a vortex whose strength is such that the singularity is removed. In other words, a

leading edge Kutta condition must be satisfied. This more realistic description of the flow

was first provided by Brown and Michael (ref.19) and is shown in the following chapter.
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3.3 Lift

The lift coefficient is based on the projected area of the body (2a- x/2), and is given

by

L
cL - (3.5)

qooax

The Jones solution yields the classical result from "slender body theory"

eL oL
e---T- = 2_r--e (3.6)

which shows that the lift grows linearly with angle of attack (fig(3.4)). The fact that the

lift (i.e. the area between the two curves in fig(3.3)) is finite despite an infinite pressure

peak at the leading edge should not be surprising, since the singularity is of the 1/x/'_ type,

and becomes an infinite slope when integrated over y.

Equation(3.6) verifies what is already known from experiments, i.e., that CL/e 2 is a

function of a/e, and suggests that a similar relationship should be sought for the more

complex separated flow. Equation(3.6) will also be derived as a particular case from the

more general flow configuration in chapter 4.

Experiments show that the linear dependence of lift on the angle of attack is a fairly

good approximation for small angles of incidence. As the angle of attack increases, however,

the lift departs rapidly from the Jones value. In the next four chapters, an effort is made

to capture this departure. It is done by acknowledging the fact that the flow separates at

some angle of attack, and the Jones model is no longer a realistic representation of the

flow field.
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o A FLAT DELTA WING WITH

LEADING EDGE SEPARATION

4.1 The flow model

This chapter discusses the Brown and Michael solution for the separated flow past a

flat delta wing. The configuration of the model is shown in fig(4.1). The fiow is assumed

to separate along the two leading edges and to give rise to a pair of line-vortices. Since

the strength of these vortices must grow in the x - direction for a conical flow field, they

must be fed with vorticity from the leading edge. Otherwise Kelvin's theorem would be

violated. The connection between the leading edges and the vortices is achieved with plane

vortex sheets emanating from the leading edges. This is the simplest possible way to model

separation.

A solution is now sought to satisfy eq(2.5) subject to the appropriate boundary con-

ditions (section(4.2)). This is easily done by introducing the complex potential for the

flow

=_+,¢ (4.1)

Note that although eq(2.5) is two-dimensional, the three-dimensional character of the

problem will still enter through the boundary conditions. After using the transformation

on the lower half of fig(2.2), the complex potential may be written as

x(¢) = -,uooo,¢- ,k In ¢ - ¢-------_

- 17 -
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where k = r/27r is the vortex strength.

gives

Transforming eq(4.2) back to the physical plane

X( z) = -zuooolV/-z2 - a2 - zk in
V/_2 __ a 2 _ _i 2 _ a 2

- + -
(4.3)

where zl is the location of the right vortex, and _'1 is the complex conjugate of zl. The first

term represents uniform flow past the plate (for small a) while the second term represents

a vortex pair in the leeward side.

4.2 Boundary Conditions

The conditions that the solutions of eq(2.5) must satisfy are the following :

(i) Tangency condition on the wing. This is automatically satisfied by choice of the

complex potential.

(ii) Separation condition on the wing. The separation line has to be specified since the

present inviscid model is unable to predict it: In this chapter, the separation condition is

simply the Kutta condition that the flow leave the plate tangentially at the leading edge

and is most easily obtained in the ff - plane, where this condition requires the presence of

a stagnation point at the origin. When transformed back to the physical plane it reads

1
uco_.._a= 1 + (4.4)

k _/zZl_a 2 _/5,__a2

(iii) The disturbances must vanish at infinity. This condition is also satisfied automatically

by the complex potential.
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(iv) The fluid pressure must be continuous everywhere. This condition, however, cannot

be met with the p.resent model. The reason is that straight vortex sheets cannot be aligned

with the flow. This difficulty could of course be circumvented by assuming curved vortex

sheets, which would form part of a three-dimensional stream surface. The solution then

would provide both the shape and the strength of the sheet (refs.28-33). However, the

problem is greatly simplified by assuming straight feeding sheets and past experience has

shown that such a model does capture the main features of the flow. The last condition

needs therefore to be replaced by the following :

(iv)' The vortex system (feeding sheet and concentrated vortex) must be force-free since

only the wing and not the fluid can sustain forces. This requires that the force on the

sheet be cancelled by an equal magnitude and opposite direction force on the vortex. The

force on the vortex arises from its inclination to the local velocity vector, which in turn,

derives partly from the free stream component uoo along the x - axis and partly from the

cross-flow velocity at its location. Thus, the force per unit length of the vortex may be

written as

where

a

-_u,,Y = -zQu,_3'- (4.5)

is the vortex sheet strength and

arg
m ---"

7 = dx const (4.6)

Zl
u,_ ---uooz--+(v+zw)l (4.7)

a
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The force on the feedingsheetarisesfrom the growth in F along the length of the vortex.

The vector forceper unit length of eachfilament representingthe vorticity lying between

xandx+dxis

,_uoo'7( zl - a) (4.8)

Setting the vector sum of the two forces equal to zero according to the previous discussion

and taking the complex conjugate of the resulting expression yields a condition for the

induced velocity at the vortex location

(4.9)

This velocity may also be calculated by differentiating the complex potential in the physical

plane (eq(4.3)) after the effect of the right vortex has been subtracted

(v - zw)_ = dx zk
d-'_"+ -- (4.10)

Z -- Z 1

Equating the right sides of eqs(4.9) and (4.10) yields the second relation between the two

unknowl'lS

Zl

+  (zx _as)
zl Zl 1 a s ]

_/(z_ - a2)(_ - a s) z_ - a s + 2 zx(z_ - aS) '
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Equations(4.4) and (4.11) must be solvedto determine the unknown quantities k and zl.

4.3 Vortex Position and Strength

Solving the system of eqs(4.4) and (4.11) numerically by the Newton-Raphson tech-

nique (refs.65,66) yields the position and the strength of the vortex as a function of the

relative incidence. The vortex location is shown in fig(4.2). As may be seen, the vortex

moves away from the surface and closer to the center-line of the wing for increasing a/e.

Figure(4.3) shows that the vortex strength grows almost linearly with the relative

incidence, the only departure from linearity occurring when the vortex system first appears,

i.e., at very low angles of attack.

4.4 Pressure Distribution

The first-order expression for the pressure coefficient is given by (ref.19)

u v 2 + w 2
Cp = a 2 - 2 (4.12)

?A_o U L

and its three-dimensional character is revealed by the inclusion of u which is c%p/Oz. The

first term on the right is necessary when the coordinates are fixed on the wing and are

tilted through the angle of attack, as is the case in the present analysis. Obviously, there

is no contribution to the lift from'this term, since it is exactly the same for both surfaces.

The velocities may be computed by differentiating the complex potential
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_--_ _ =_Ldadxj =_ (4.13)

v=_ _ =_Ld-_J (4.14)

dx } = __ _ d_ cl_ _ (4.15)w = -_ _ L d_ dz j

where of course for this case of a flat wing w = 0 at the surface.

Figure(4.4) shows the pressure distribution on the surface of the flat cross-section for

a/¢ = 1.0, as compared with the corresponding pressure distribution in attached flow.

The singularity which appeared in the Jones solution has now been removed, since the

flow no longer has to negotiate the sharp turn at the leading edge, but there is a pressure

jump there due to the vortex sheet, equal to _uooF/x. This pressure jump is necessary to

generate the force on the vortex sheet which balances the force on the vortex.

The very low pressure region on the upper surface is the vortex signature, and its

position corresponds approximately to the lateral location of the vortex. The peak suc-

tion is an indication of the vortex strength, while the width of the suction is inversely

proportional to the distance of the vortex from the surface.

The difference between the solid lines and the dotted lines in fig(4.4) is, of course, the

vortex llft.
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4.5 Lift

The normal force is most easily computed by calculating the change in downward

momentum through an infinite plane perpendicular to the longitudinal axis x of the wing

at the trailing edge (Trefftz plane). Thus

(4.16)

Note that cO_/Oz is the velocity component in a plane perpendicular to the wing surface,

and therefore it contains the upwash contribution of the free stream. Integrating with

respect to z produces a contour integral of the velocity potential

N - -_u_ f ¢pdy (4.17)
c

The contour is shown in fig(4.5) and includes the cuts connecting the separation points

with the centers of the vortices. The vortices may be included in the body without affecting

the normal force, since the forces on them cancel those on their feeding sheets. In terms

of the complex potential

Note that the z in the first integral is the complex variable in the physical plane while

z in the second integral is the real variable in the direction normal to the wing surface.

Since ¢ = 0 on the body and is single-valued on the vortices and the feeding sheets, the

second integral vanishes. Furthermore, the function )/(z) is analytic in the field external
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to the contour ; hence, the integral is independent of the path provided that it encloses

the original contour. The simplest way to integrate eq(4.18) is by transforming it to the

- plane (fig(4.5b))

= x(O dC
C

(4.19)

The integral of the logarithm can be evaluated by deforming the contour into a large circle

whose radius ---, cx_. Since there are no singularities between the original contour and the

large circle the integrals are equal. The remaining integration is done along the vertical

line between the branch points and yields

(4.20)

Transforming back to the z - plane gives

+ +

or in dimensionless form

(4.21)

C_ : 2_" a_4- 2F _/z_ - a2 4- _5:_ - a2 o_ (4.22)
_2 _ auoo a

Equation(4.22) contains CL because for small angles of attack the normal force can be

taken equal to the lift. This is in agreement with the well known result that for a lightly

loaded wing (small perturbation flow) the induced drag is a second-order quantity. The first

term, being identical to the right side of eq(3.6), is the linear contribution from "slender
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body theory", while the second term is the non-linear vortex lift. Figure(4.6) shows both

components, as well as the total lift, as functions of the relative incidence. It may be seen,

that the vortex lift is initially very small, but as the relative incidence increases it soon

becomes the dominant term in the total lift. At a/e = 1.0 it has approximatelly the same

magnitude as the Jones lift while at o_/g -- 2.0 it is approximatelly twice as large as the

Jones lift.

Brown and Michael have also carried out a second order approximation to eq(4.22).

The analytical expression for this result is given by

u + 1.322
g2 g

(4.23)

This result is very similar to the expression derived by Smith (ref.29) using his "rolled-up

core" model for thin slender wings in conical flow

--_ - 27r + 4.9 (4.24)

Thus, it was verified that CL/S 2 is a function of the relative incidence a/e even for the

case of vortical separation.
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@ A FLAT DELTA WING

WITH DISPLACED SEPARATION

5.1 The Flow Model

The effect of vortex separation on the lift of a slender delta wing was examined in the

previous chapter. The next step is to explore the effect of the location of the separation

lines on the formation of the vortex system and consequently on the vortex lift. The easiest

way to perform this task is through an inviscid analysis, in which the separation lines are

selected arbitrarily. The flat delta wing offers once more the simplest geometry.

The flow configuration is shown in fig(5.1) and is identical to the one used in the

previous chapter, except that the separation lines have now been displaced a distance _,

still aIong generators but closer to the leeward generator of the wing.

The complex potential is still given by eqs(4.2) and (4.3), respectively, for the trans-

formed and physical plane.

5.2 Boundary Conditions

The requirement for separation from a point a - _y in the physical plane translates

into

where

¢,
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(5.2)

is the corresponding stagnation point in the transformed plane. The positive sign is used

for separation from the upper surface while the negative sign is used for separation from the

lower surface. Substituting eqs(4.2) and (5.2) into eq(5.1) and transforming the resulting

expression back into the physical plane yields

u_a I I

T =v__ a_-,_/_(_-2a)+v__-_ +,_/6_(_-2_) (5.3)

where the signs in front of the square roots correspond to the flow separating from the

upper surface (i.e., the positive sign is used in eq(5.2)).

The procedure for balancing the forces on the vortex system is the same as that

described in section (4.2). The force on the concentrated vortex is still expressed by

eq(4.5) while the force on the vortex sheet is now

--z#uooT(zx -- a + 6_) (5.4)

Setting again the vector sum of the two forces equal to zero and taking the complex

conjugate gives an expression for the induced velocity at the location of the vortex

(v - :w)l = euoo - 1 +

Equating the right sides of eqs(4.10) and (5.5) now yields
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Zl Zl

- - + - 2a)(z -

Zl

+2zl(z_-a 2) =eu_ -1+ (5.6)

The numerical solution of eqs(5.3) and (5.6) gives k and zl in terms of a/e and 6y/a.

5.3 Uniqueness of the Solution

An interesting result which occurred when the separation lines were forced away from

the leading edges of the wing, was the appearance of two more families of solutions. They

are discussed in some detail in section (6.3) ; here only the one which seems to agree with

physical observations regarding the locus of the vortex positions for increasing relative

incidence will be considered further.

5.4 Existence of the Solution

Another interesting aspect of the model with displaced separation lines is the difficulty

in finding solutions for small a/e. The farther away the separation line is moved on the

lower surface, the higher the minimum value of a/s for which vortex solutions first appear.

This may be justified physically from observations of the actual flow over a flat delta wing.

Since this flow separates at the leading edges, it is normal to expect some difficulty in the

formation of the vortex system when the separation line is forced away from its natural

position. Also, since in this model no account of the viscosity has been taken so far, it
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must be concludedthat it is the kinematics of the flow field which prevent the formation

of the vorticesat low anglesof attack.

The situation is quite different when the separationline is movedon the upper surface

however.Then, there is no difficulty in finding solutions. The (a/c),_i,, remainszero as it

was for theBrown and Michael solution. This may be explainedby the fact, that although

the separationline again shifts away from its natural position, it now movestowards the

attached flow solution (i.e., the Jonessolution which wasdiscussedin chapter 3).

5.5 Vortex Position and Strength

Figure(5.2) shows the vortex location for various positions of the separation line. For

a given separation line (i.e., constant ,Sy/a) the change in vortex location for increasing

relative incidence resembles in general the Brown and Michael result, which corresponds

to leading edge separation, except that it is displaced inward and toward the surface as the

separation line moves inward. For a given angle of attack (i.e. constant a/c), on the other

hand, the vortex is displaced toward the leeward generator of the wing. As the separation

line approaches the center-line of the wing (i.e., (5_/a) ---* 1), both curves collapse into

the center of the cross-section, and the Jones solution is recovered. An interesting point

illustrated in fig(5.2) is the sensitivity of the vortex position to very small displacements of

the separation line. For a/c = 3, for example, it is seen that by displacing the separation

only 1% causes a 10% shift of the y - vortex coordinate.

From the numerical solution, the coordinates of the vortex were related to the Brown

and Michael solution through the curve-fit approximate expressions given below

(5.7)



( / )05zl--zl0 1- (5.8)

The growth of the vortex strength with relative incidence is, as expected, similar to the

Brown and Michael case (fig(5.3)), and it is very sensitive to small displacements of the

separation line ; for a/e = 3, a 5% displacement of the separation reduces the vortex

strength by approximately 25%.

An approximate expression for the decay of vortex strength with distance of separation

from the leading edge is given by (fig(5.6))

(5.9)

where the Jones solution (k = 0) is recovered for (6u/a) = 1.

5.6 Pressure Distribution

The analysis and formulation of section (4.4) are also valid in this case. Although 6y

does not show explicitlyin the equations, itaffectsthe solution for the vortex position

and strength - as was discussed in the previous section - and as a result, the pressure and

force on the wing.

The pressure distribution for (6y/a) = 0.05 is shown in fig(5.4). It is very similar to

the pressure distribution for the Brown and Michael solution but the singularity at the

leading edge has been reintroduced.

- 30 -



5.7 Lift

The vortex lift coefficient (fig(5.5)) is also related to that for the Brown and Michael

solution by means of a similar approximate formula (fig(5.6))

3

CLV _" CLVO (1 --
(5.10)

Both figs(5.5) and (5.6) clearly show the diminishing of the vortex lift contribution for

increasing distance of the separation line from the leading edge, recovering the Jones lift

in the limit as (6v/a) ---* 1. From a comparison of the exponents in eqs(5.9) and (5.10) as

well as the two curves in fig(5.6), however, it may be seen that the vortex lift decays much

faster than the strength of the vortex. This is so because the vortex lift is affected both

by the strength and the position of the vortex. As the separation line moves inwards, the

vortex gets closer to the wing surface so that the area that can benefit from the increased

circulation also diminishes. In other words, the decay of the vortex lift is the result both

of a diminishing vortex strength and of a diminishing area of lower pressure on the upper

surface of the wing.

One may argue that the practical value of this solution (i.e., a fiat delta wing with

displaced separation lines) is minimal because of the leading edge singularity ; however,

it represents the limiting case for a delta wing of finite thickness with very small leading

edge radius.
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o A DELTA WING

WITH ELLIPTICAL CROSS-SECTION

6.1 The Flow Model

There are two reasons that make rounded leading edges desirable. The first one is to

get rid of the singularity which reappeared at the leading edge of the flat delta wing when

the separation line was displaced ; a rounded leading edge eliminates the requirement of

infinite acceleration and the resulting infinite velocity and pressure, although some suction

will still exist. The second one is the necessity for a rounded edge in order to control

separation by blowing.

From the analytical point of view, the elliptical cross-section is the most convenient

one to consider, since it may be easily related to both the flat plate as well as the circle

by means of the Joukowski transformation (fig(2.2)). The flow configuration is shown in

fig(6.1), the only new element from the previous one being the thickness.

It is now easier to write the complex potential in the circle-plane (fig(2.2)), since the

circle theorem allows one to write directly the contributions of the vortex system and its

image

xo_(e)=-zu_ e- -zkln _+e,)(ee, - R_)]

The first term on the right side represents uniform flow past the circle (the angle of attack

has been assumed small), and the second term represents a vortex pair on the leeward side

together with its image inside the circle.

To this result we need to add the complex potential for an expanding ellipse of constant
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axis ratio, in order to satisfy the tangency condition on the surface of the cone

x, = x,1 + x,2 (6.2)

where

o" + _- c2 (6.3)
X,1 = uoob_ In 2

and

(6.4)

The derivation of X,x and X_2 is given in appendix 1. Xo represents a source distribution

on the horizontal plane of symmetry of the cone, directly related to the thickness. The

total complex potential in the physical plane is of course

x = xo,,+ x. (6.5)

The velocity field is computed in the same manner as in section 4.4, except that now the

evaluation of the derivative dx/da is more involved (see appendix 3).
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6.2 Boundary Conditions

The position of the separation point in the physical plane can be represented by

as(a --6y, 6z) (fig(6.2)). Under the Joukowski transformation a, goes into a point 8s in the

8 - plane, given by

1 [a - ¢5y+ ZSz Jr _/(a - _)2 + 26z(a - 6y)z- 62 - c2]es=_

Here 8y and 8z are related by

(6.6)

(a -- 6_)2 52
+V =1 (6.7)

since as is a point of the elliptical cross-section. Requiring the presence of a stagnation

point at ors is equivalent to

or, from eq(6.1)

=o (6.8)
de Jo,

(6.9)

From the force balance, referring to fig(6.2), we may derive, in a similar manner to

that described in chapters 4 and 5, an expression for the induced velocity at the vortex

location
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[v-zw]l = uooe + 6y +z6z 1
a

(6.10)

As before, this result can be combined with eq(4.10) - written in the a - plane - to give

the second equation needed to solve for the unknowns k and al

_UooOt

al 2R 2

be zkc 2
+ Uoo +

2(4 - 12_)(0.,+ _/0._- 12=)

0.1+ _/0._- 12:(0.1+ _/0._- 12:):+ 4n2

0"1 J¢- _12 -- C2

(0.1 + _/0.12 -- 122)(0"1 "4" _/0"12 -- C2) -- 421_2

0"1 "Jr" 0"1 + _/0.12 -- C2 Jr" _/_.2 --122

+ 6y + z6z 1 (6.11)
a

The numerical solution of eqs(6.9) and (6.11) gives k and 0"1 in terms of _/e and 0s.

6.3 Uniqueness of the solution

Given the thickness of the wing and the position of the separation point, three solutions

for the locus of the vortex positions for increasing o_/_ were found again (fig(6.3)) :

In the first solution, the vortex moves farther form the wing surface and becomes

stronger as the angle of attack increases. This is the only solution which agrees with

experimental observations.
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In the secondsolution, which appearsin fig(6.3) as an extensionof the first one, the

vortex moves closer to the wing and its strength increases as the angle of attack increases.

In the third solution, the vortex is under the wing and again moves farther away and

becomes stronger as the angle of attack increases.

The second solution dissappears when the separation point is exactly at the leading

edge. It should be noted that all three families of solutions exist also for the limiting cases

of the fiat delta wing (see section (5.2)), as well as for the circular cone.

Although it might be interesting to investigate the question of stability for the second

and third solutions, they are regarded as unrealistic and will not be considered further in

the present analysis.

6.4 Existence of the Solution

As is shown in fig(6.3) there is a minimum value of the parameter a/s below which no

solution exists. This is in agreement with experimental observations (refs.34-39), although

the theoretical (a/_),,,i_, may sometimes be larger than its corresponding value from ex-

periments. The discrepancy between the experimental and theoretical values in this case

results from the inability to satisfy the force balance for the vortex system due to the

oversimplified representation of the vortex sheet.

In fig(6.5), the vortex solution boundaries are shown as functions of thickness and

separation location. One sees that (OZ/_),.r,i,_ becomes smaller as the thickness of the wing

diminishes. In the limiting case of a fiat delta wing separation begins immediately for any

> 0 (provided that the separation is fixed at the leading edge). This is also in agreement

with experimental observations (refs.34-39).
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6.5 Vortex Position and Strength

Approximate scaling laws similar to the ones shown in section (5.5), were also derived

for an elliptical cross-section 10% thick

(6.12)

zl zl0 (6.13)

k_-k0 1- =k0 1-- (6.14)

Here 7/is the distance from the leading edge to the separation point along the surface, and

the reference values are the ones corresponding to the flow separating from the leading edge.

By comparison with those for the flat cross-section (see table(6.1)) it may be concluded

that there is (almost) no variation in the vertical distance of the vortex from the wing

surface as the wing acquires thickness, whereas the horizontal distance of the vortex from

the center-line varies in the same manner as for the flat cross-section. As for the vortex

strength, it appears to decay more slowly for the thick cross-section. Its growth with a/_

is shown in fig(6.4) for a cross-section 5% thick and it is almost identical to the one for

the flat cross-section with the same location of separation.

- 37 -



6.6 Pressure Distribution

Equation(4.12) may once more be used to compute the pressure coefficient, except

that w is no longer zero at the surface for the case of the elliptical cross-section.

The pressure distribution for an elliptical cone 20% thick, is shown in fig(6.6). Note

that the infinite suction singularity at the leading edge has been removed, but there is

still some suction there. Comparing fig(6.6) with fig(5.4), one sees that the vortex suction

is now larger (more negative peak). This is an indication of increasing vortex lift with

thickness.

6.7 Lift

The normal force may be calculated in the same manner as for the flat delta wing.

Equations(4.16) through (4.19) are still valid with the appropriate change of complex

variable (z into a). The source term may be omitted from the complex potential since it is

axisymmetric and therefore does not produce any downward momentum. The integration

is performed again in the ¢- plane (fig(6.7)), as described in section (4.5), and the result

in the present instance reads

Transforming back to the a - plane

(6.i5)

_=,_,,,%o_,,+_,,._,,{(,+_--___/_- _+
- ;}8 -

a+b)}6t -- b °rl



or, in the usual dimensionless form

Cc a 2F 3{_( a+b_ (a+_) )as--Y = 2_r- + 1 + yfl_12 c2 (6.17)

Figure(6.8) collects lift curves for all the configurations considered thus far. The

discussion in section (5.7) regarding the various curves for different 6y is valid for elliptical

cross-sections as well. A comparison with the flat delta wing (see also table 6.1) clearly

shows that the general trend is to achieve higher CL for given a/e as thickness is added

on the wing.

The approximate scaling law showing the variation of vortex lift with 6_ is again

similar to the one for the flat cross-section

Coy _- CLvo 1 -- = CLVO 1 -- (6.18)

As was the case with the vortex strength, thickness causes the vortex lift to decay more

slowly with shifting of the separation point toward the leeward generator.
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7. A CIRCULAR CONE

7.1 The Flow Model

The circular cross-section may be looked at as one of the limiting cases of the elliptical

cross-section, as b --. a, the other one being the fiat plate (b ---* 0, chapters 3, 4, 5). The flow

configuration is shown in fig(7.1), and was first treated by Bryson (ref.20). The complex

potential is given again by eq(6.5) except that the source term is now different

X,1 = u_Re In0 (7.1)

The difference is that the ellipse semi-minor axis has been replaced by the circle radius, and

the plane source distribution has been replaced by a linearly growing source distribution

along the axis of the cone. The logarithmic part could have been taken care of directly

by the conformal transformation (see fig(2.2)). The transformation, however, would not

change b into R. Thus, it is worth noting, that con.formal mapping, although it comes very

helpful in handling the cross-flow, cannot fully take into account three-dimensional effects

such as the expansion of the body.

7.2 Vortex Position and Strength

The conditions and approach for the solution follow from the case of the elliptical

cross-section with b -- 1.0 and therefore they will not be repeated here. The only change

that may be worth including in the computer programs is to replace the position of the

separation point as given by (a - _,/_z) for the case of the ellipse, by a separation angle
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8s (the angle between the windward generator and the separation fine).

As was seen from fig(6.5) the minimum value of a/e for which a vortex solution first

appears when the separation point is fixed at the leading edge (84 = 90 °) is 6.22. Because

this value is unrealistically high for practical applications, a separation angle close to the

one observed in most experiments with circular cones (04 = 145 °) was taken as a reference.

For such angle, no simple formulae could be derived to relate the vortex coordinates,

strength and lift for small excursions from this separation location as was done for the

flat plate and the elliptical cross-section. It may be stated however, that again the vortex

moves closer to the surface of the cone and becomes weaker as the separation point shifts

towards the leeward generator.

Figure(7.2) shows the domain of vortex solutions. The lower boundary of this domain

is a function of both the location of separation and the relative incidence. It is worth noting

that for small separation angles (04) vortex solutions cease to exist before the vortex reaches

the surface of the cone. The upper boundary of the domain is the equivalent Foppl curve

(i.e., the locus of the limiting vortex positions for high angles of attack, ref.20) for the case

of a circular cone.

7.3 Pressure Distribution

The pressure distribution for a circular cone is shown in fig(7.3) for a/e = 2.0 this

time, since the separation would have to be moved quite close to the leeward generator

in order to get solution for a/e = 1.0 as in the previous cases. The same features may

once more be identified (suction due to the vortex, and jump due to the vortex sheet).

It is also worth noting that the Jones pressure distribution, shown in fig(7.3) with dotted

line, is almost identical to the one for vortex separation, up to an angle of almost 100 °

from the windward point. The main difference, however, between the two cases is that the
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Jones pressure distribution has only one adverse gradient while the pressure distribution

for vortical separation has two adverse gradients since the two flows (starting respectively

at the windward and leeward points) move toward each other.

7.4 Lift

From section (6.7) we may also get the lift coefficient for the limiting case of b = a

4Fyl a
C..._.L= 2an_ + (7.2)
g2 _ uooa2oL

The above expression is plotted in fig(7.4). The lift curves do not go through zero as

in the previous cases because of the absence of vortex solutions for small o_/e. Thus it is

implied that at the point where they start they are connected with the Jones lift curve by

a vertical straight line. This means that the vortex strength does not develop gradually

from zero as in the flat cross-section case, but rather, it jumps into a certain starting value

for the first a/e for which solutions are found.

7.5 Summary of Inviscid Results

From the inviscid analysis in chapters 3 through 7 the following conclusions may be

dravcn :

(i) The lift on conical bodies at incidence has two components ; the Jones lift and the

vortex lift. The Jones lift is calculated assuming attached flow everywhere on the wing

surface and grows linearly with angle of attack. The vortex lift is computed (in the present

analysis) with the "single line-vortex" model and grows non-linearly with angle of attack.
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The fact that the two lift components are decoupled suggests that blowing is a practical

solution for changing the lift on the body without changing its attitude.

(ii) As the separation lines are moved from the leading edges toward the center-line of the

wing, vortex lift is suppressed and in the limit, as the separation lines coincide with the

center-line, the Jones solution is recovered. This suggests that displacing the separation is

indeed a viable mechanism for controlling vortex position and vortex lift.

(iii) The vortex lift increases with increasing thickness of the wing (assuming always the

same position of the separation lines). This advantage however cannot be realized at small

angles of attack due to increased difficulty in finding solutions.

So far, the separation lines have been chosen arbitrarily. In reality however, the

position of separation must be determined through a viscous analysis. In other words,

the velocity and pressure fields computed for the outer inviscid field, are introduced into

the boundary layer equations ; integration of these equations yields two locations where

the boundary layer leaves the surface, one on each side of the hypothetical separation line

which was arbitrarily chosen for the inviscid analysis. This procedure is undertaken in the

next chapter for the circular cone.
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So THE BOUNDARY LAYER

ON A CIRCULAR CONE AT INCIDENCE

8.1 Introduction

The main purpose of the viscous analysis is to predict the line(s) on the surface of the

cone along which the boundary layer will separate.

In general, the boundary layer on a cone goes through the following stages as the

angle of attack increases (ref.52) :

(i) At a = 0 it is similar to that on a semi-infinite flat plate or airfoil section and it

may be studied by plane-flow methods.

(ii) At small a it thickens at the top of the cone and thins at the bottom due to the

circumferential flow induced by the angle of attack.

(iii) At ot/e ___0.5 an adverse circumferential pressure gradient first appears at the top

of the cone.

(iv) At some higher a, a separation bubble appears embedded at the base of the

boundary layer growing in extent as a increases.

(v) At a/e = 1.0 the boundary layer is no longer thin and the vortex bubble already

existing at the top is in the process of coalescence into a symmetric pair of strong steady

vortices.

(vi) At a/_ >> 1 (i.e. a slender cone at very large incidence) the circumferential flow

becomes similar to the plane flow about a cylinder and a von-Karman vortex street is shed

at the top of thecone.

In the present analysis we are concerned with stage (v).
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8.2 The Three-Dimensional Boundary Layer

Here are discussed briefly the properties that distinguish three-dimensional boundary

layers from two-dimensional ones.

(i) Secondary flow.

In three-dimensional flow there are always pressure gradients at an angle to the main flow

direction, providing a centrifugal force which distorts the outer flow streamlines. In the

case of a cone at incidence for example, there is a circumferential pressure gradient while

the main flow direction is almost longitudinal. Since the pressure is constant across a thin

boundary layer, particles following a streamline within the layer are subject to the same

circumferential pressure gradient as are those following the outer streamline. However,

the boundary layer particles have lower inertia and tend to take a course conforming more

closely to the direction of the circumferential pressure gradient as is shown in fig(8.1).

(ii) Streamline divergence.

The normal growth of a two-dimensional boundary layer is due to diffusion of vorticity

(flg(8.2a)). In a three-dimensional boundary layer over a surface curved transversely to

the direction of the flow (flg(8.2b)) it is necessary for the flow to spread itself over a

progressively wider extent of surface as it grows. This spreading results in a thinner layer,

than in the corresponding two-dimensional case. If the same velocity gradient is sustained

between the surface and the outer flow in the two cases, the boundary layer on a cone will

be thinner by 1/v/'ff than on a fiat plate, resulting in a skin friction greater by _ (ref.46),

provided that equal lengths for the growth of the boundary layers are considered in the

two cases. Stated differently, the cone boundary layer is similar to that on a flat plate with

Reynolds number three times as great.
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(iii) Separation.

In plane flow separationoccurswhena reverse-flow velocity profile appears, or equivalently

when r = 0. In three-dimensional flow such a criterion fails to establish the separation lines

because there is no way to decide which component of the shear stress is the important one

to consider. However, it may be observed that at a separation line the wall stream surface

bifurcates, and at a line of reattachment (if such occurs) the two stream surfaces join again

at the wall. Thus, at the base of the boundary layer, there is embedded a distinct bubble

that does not exchange fluid with the rest of the flow. It is therefore possible to generalize

the definition of a separation region in three-dimensions as a bubble of fluid embedded in

the boundary layer between the solid boundary and a stream surface meeting the body in

a closed curve and containing a sheet pattern of vorticity.

Of course, the kind of separation which is of interest for the present problem occurs

when the embedded vortex sheet coalesces to form strong concentrated vortices. The

mechanism of coalescence is described in ref.45. The vortex sheet is represented by a

series of individual vortices as in fig(8.3), while the effect of the wall is represented by the

image vortices below the wall. If the fluid above the wall imposes no additional constraint

(i.e. boundary layer of locally infinite thickness), each vortex would move more to the left

toward the separation point under the influence of the induced field of its image. Vortices

initially near the separation point tend to remain fixed, however, because the layer is

supposed to remain thin. Therefore, each vortex moving upstream tends to overtake the

vortex ahead of it, and coalescence into a single strong vortex ensues.
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8.3 The Boundary Layer Equations on a Circular Cone

The three-dimensional boundary layer equations are given in appendix 4, written in

a general system of orthogonal curvilinear coordinates. For a circular cone a coordinate

system like the one described in section (A4.3) is obviously convenient. The geodesic

coordinates are taken to be the cone generators while the geodesic parallels are the circles

swept by the meridional angle, so the corresponding metric coefficient is the local radius

of the cone (fig(8.4)). This gives

hi -- 1 (8.1a)

h2 = R(_) = _sin _ ___ (S.lb)

ha -- 1 (8.1c)

The last equality in eq(8.1b) is validated by the assumption that the cone is slender. For

the aforementioned coordinate system on a circular cone at an angle of'attack, eqs(A4.3)-

(A4.6) reduce to

continuity

momentum in _ - direction

Ou 10v Ow

u+_+ + =0 (s.2)

Ou v Ou Ou v 2 1 Or e

_b?+ _-_0_+w_ - 2-= _0_ (s.3)
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momentum in 77- direction

Ov v Ov Ov uv 1 c3p + 1 Or, (8.4)_+_T_+_+T = _0, PoT

momentum in ( - direction

Op 0
o(

(8.5)

Furthermore, eqs(A4.7) and (A4.8) become

0Ue
= evo (8.6)

07

_ap faro )07 = v, \ 07 + _u, (8.7)

Integrating eq(8.4) across the boundary layer (i.e. from ( = 0 on the body surface to

_ co outside the boundary layer), one obtains

0

The normal velocity component w, can be replaced by

w---_ u+ O¢ +eOrl/de
(8.9)
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from the continuity eq(8.2). When this substitution is made and integration is carried out,

eq(8.8) becomes

'U e fO

+ 2 [ u(v_ - v)d( + (u. - u)d_ = "r'7 (8.10)

The displacement and momentum thicknesses 6 and 0 respectively are defined as follows

J?.L e
61 -- .--Ud_ (8.11a)

tl e
0

C,O

0

U(U e --

81, =---j -u_ u)'dC (8.11c)
0

}v(v'-v)d( (8.11d)e. ___ %_
0

oo

/" .(_-_,)
8x2 -_ a u_: dff (8.11e)

0
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f u(vo- V)d821 -- (8.11f)
UeUe

0

Incorporating the above definitions into eq(8.10) gives the integral form of the boundary

layer equation for the cross-flow

20822 Ov,
+ 2822) + eu.v_(61 + 2822)

+ eu.v.[(n + 2)e2_- 2922] = r,R (8.12)

Here n is the exponent in the boundary layer growth expression

6 "" kBL_ _' (8.13)

Equation(8.12) may also be written as

(8.14)

This equation is similar to the corresponding momentum equation for a two-dimensional

boundary layer, the primary difference being the presence of the last term on the left side

which contains the momentum thicknesses due to the interaction of the longitudinal and

circumferential flows.
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So far no assumptions have been made regarding the state of the boundary layer.

Therefore, the above derivations are valid for both laminar and turbulent boundary layers,

on condition that in the latter case u and v denote the time averages of the respective

velocity components. The primary difference, however, between the two cases (i.e. laminar

and turbulent) will be the rate of growth of the boundary layer (eq(8.13)). In the laminar

case n = 0.5 while in the turbulent case n = 0.8 (refs.40 and 41).

The last term in eq(8.14) was evaluated numerically for several cases (a, _) and several

locations (r/). Its maximum contribution to the total value of the shear stress on the right

side, occured when A, = 0 (eq(A5.6)), and was approximately 13% for the laminar layer

and 21% for the turbulent one. At separation (A, -- -12), its contribution was only 0.6%

and 0.9% respectively for the two cases. Thus, it seems reasonable to neglect this term ;

when this is done, eq(8.14) becomes

20022 (Ov_ _ r, TR
v_--0r/+ v_(62 + 2022) k, 0r/ + _u_] =7-

(s.zh)

This result is exactly analogous to the corresponding equation for the two-dimensional

boundary layer. Thus, the Karman/Pohlhausen method can be applied. The solution fol-

lows immediateUy from the two-dimensional case, and the procedure is shown in appendix

4. Table(8.1) illustrates the analogy between the various quantities involved in the two

cases.

8.4 Laminar Boundary Layer

The separation criterion for the two-dimensional laminar boundary layer was estab-

lished analytically by Pohlhausen and may be written in the equivalent conical terms as
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,,,.o/ _ -,_o.'7 (8.16)

Following the analysis in appendix 5, the above expression leads to eq(A5.32), which is

repeated here

SCL - ELtV -6 _ + cU ELVSdrl = -0.334
0

(8.17)

U and V are the dimensionless external velocities

U_

U -- (8.18a)
Uoo

v = (s.lsb)
Uoe

whereas EL is defined by

0

(8.19)

For sufficiently slender bodies and small angles of attack, as has already been assumed in

the inviscid solution,

ue_-uoo=_U_ 1.0 (8.20)
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so eqs(8.17) and (8.19) reduce to

SCL-_EL1V-6(dd_H-e EcVSdrl=-0.334
0

(8.17a)

(8.19a)

Thus, if the outer field is known, eqs(8.19a) and (8.17a) can be integrated. Starting

from the reattachment point (7/- 180 ° for the usual range of angles of attack) the function

SCL is computed until the point is reached for which SCL = -0.334. This will identify

the upper separation point r/,,. The integration is then carried out from the windward

point (7/= 0 °) until the separation criterion is satisfied again at some location. This will

identify the lower separation point r/or. The two points at which the boundary layer leaves

the surface will, of course, enclose the point at which the vortex sheet emanates in the

inviscid outer solution.

8.5 Turbulent Boundary Layer

The separation criterion for two-dimensional turbulent boundary layer was determined

experimentally by Nikuradse, and may be written in conical terms as

---4.7 (8.21)

This result may be tranformed in a similar manner as for the laminar boundary layer

(appendix 4)
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- SCT - ETV5 + eU ETV4do + c2 = -3.75 (s.22)

where ET is now defined by

ET -- exp 5.25e _-d_?
L rhtr

(s._3)

If one assumes as in the laminar case that U _- 1, eqs(8.22) and (8.23) reduce to

SCT = ETV5 + e ETV4drl + c2 -3.75 (8.22a)

ET -- exp 5.256

L _tr

(8.23a)

The integration of the turbulent boundary layer equations is carried out in the same

way as for the laminar boundary layer, assuming that the boundary layer is turbulent

from its start. For a given cone (e) and angle of attack (a) the upper separation point is

almost the same as for the laminar case, since the boundary layer which develops from the

upper reattachment point has very little space to travel. The lower separation point, on

the other hand, will occur at a larger distance r/s1 since the turbulent boundary layer can

progress farther into an adverse pressure gradient before separating, due to its increased

momentum near the surface.
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o DETERMINATION OF THE SEPARATION

LINES ON THE CIRCULAR CONE

9.1 Viscous/Invlscid Interaction

The boundary layer analysis in the previous chapter was made possible by assuming

that the term containing the momentum thicknesses due to the interaction of the longi-

tudinal and circumferential flows was negligible compared with the rest of the terms in

the momentum equation. Thus, for both the laminar and the turbulent case eq(8.14) was

reduced to eq(8.15) which is similar to the momentum equation for the two-dimensional

boundary layer (table(8.1) ).

On the other hand, the derivation of eq(8.14) in the first place, was made possible

by the use of the simplified coordinate system described in section(8.3), which led to the

simple expressions for the metric coefficients of eqs(8.1).

Unfortunately for an elliptical cone only one of these coefficients is unity, while the

other two, when expressed in terms of the local coordinates, contain hyperbolic and trigono-

metric functions which lead to more complicated form for the boundary layer equations.

For this reason, the viscous analysis is restricted to circular cones only.

The boundary layer separation in the cross-plane is sketched in fig(9.1). The matching

of the viscous and inviscid flow fields is illustrated in fig(9.2), and is described below :

Velocity distributions as functions of the angle 0 around the circular cross-section of

the cone calculated (for a = b = R = 1) using the "single line-vortex" model are introduced

into eqs(8.17a) and (8.19a) for the laminar case and into eqs(8.22a) and (8.23a) for the

turbulent case. The integrations are carried out numerically by the Romberg method

(refs.65,66). First, the starting point is taken at the upper reattachment point (8 - 180 °
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if a is large enough) and procceding clockwise (for the right side of the cone) the point

where the top bo.undary layer leaves the surface is identified. Similarly, starting at 8 = 0 °

and proceeding counterclockwise (for the right side of the cone again), the point where

the boundary layer leaves the surface is identified when SCL = -0.334 or SCT = -3.75

depending on the state of the boundary layer.

For a given cone geometry and angle of attack, the only acceptable solution (in terms

of the assumed separation angle) is the one which yields the same pressures at both points

where the boundary layer leaves the surface. This assumption is justified by the fact that

the two streamlines which separate from the surface form a bubble (fig(9.1)) inside which

there is no flow and therefore the pressure must be uniform.

9.2 Converged Solutions for Laminar and Turbulent Boundary Layers

Fig(9.3) shows the converged solutions for a cone with e = 5° at a = 30 °, for laminar

and turbulent boundary layers. It may be seen, that the main difference between the two

cases is the location of the lower separation. As was expected, when the boundary layer

is turbulent, separation is delayed until a larger angle. The locations of the upper and

inviscid separations as well as the vortex positions are almost identical for the two cases.

9.3 Comparison with Experiments

Friberg (ref.37) performed several experiments with circular cones in which the exter-

nal flow was subsonic and the boundary layer was laminar. He was able to fit his observed

separation lines reasonably well by the formula
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B8 = 90 + (73 -- V'51.4a -- 450)(0.76 -{-0.024z) (9.1)

for 10 _< _ _< 30 and 5 _< s _< 20

Jorgensen (ref.34), on the other hand, with his experiments in which the external

flow was supersonic and the boundary layer turbulent, revealed a separation angle of 147 °,

which is also the angle that Bryson (ref.20) uses in his model.

In fig(9.4) the experimental results from both references are shown together with

predictions of the present theory. The flat part which is common to all the curves in the

low range of angles of attack represents attached flow (no vortex solutions exist in this

range). At (_ __ 5 ° which corresponds to o_/_ __ 1 separation first takes place and all the

separation angles change rapidly as a increases. Finally, at a _ 15 ° which corresponds

to a/e _ 3, each separation angle reaches a limiting value which remains constant as (_

increases.

The agreement of the theoretical predictions with experimentally determined points

is excellent. Most points seem to fall on the lower separation Curve for the turbulent

boundary layer.

Another feature shown by Friberg's experiments is that, although there is clearly a

trend of the separation lines to move windward as a increases, surprisingly, there are

exceptions such as the last point (a = 30 °) for the e = 5 ° cone in fig(9.4).

Lastly, it must be noted that Friberg's experiments showed a separation angle which

is a function of both a and e and not only of their ratio a/e, while the present theory

shows that the separation angle is almost a unique function of (_/_.
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9.4 Pressure Distribution

The modified pressure distributions for a/e = 2 are shown in figs(9.Sa) and (9.5b)

respectively for the laminar and turbulent boundary layers. The flat portion of these curves

represents the separation bubble where the pressure is required to be uniform. Although

the initial inviscid pressure distributions are almost identical since the inviscid separation

is almost the same (/9_ = 157 ° and 8, = 159 °) for the two cases, the modified curves which

result from the inclusion of the boundary layer show two characteristic differences. First,

the separation bubble is larger for the laminar case (see also fig(9.3)), and second, the

vortex suction is more pronounced for the turbulent case.
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10. CONTROL OF SEPARATION

BY BLOWING

10.1 Introduction

So far it has been shown that the boundary layer on a circular cone at incidence, as

it develops from the windward stagnation line towards the leeward generator, will sooner

(when it is laminar) or later (when it is turbulent) separate due to the adverse pressure

gradient which encounters. It is possible, however, to postpone this separation, by replacing

the natural boundary layer with a turbulent wall jet. The increased (due to the jet)

momentum near the surface reenergizes the boundary layer, thus allowing the viscous flow

to remain attached for a larger arc.

The mechanism of delaying the boundary layer separation through blowing is sketched

in fig(10.1). The wall jet changes the location of separation, and this in turn changes all

the vortex parameters (position, strength and lift). In other words, blowing changes the

entire (inviscid) outer flow field by changing the conditions which generate this field.

Although the behavior of a wall jet flowing around a curved surface has been the

subject of study for almost two centuries, the idea of using a thin, high velocity, tangential

jet of fluid to control the location of separation on wings with rounded edges is relatively

new. Wood and Roberts (ref.64) have recently examined the practicality of such a scheme

by performing a wind tunnel experiment in which a wall jet was used, as a cross-flow plane

device, to control the separation and hence the positions of the associated vortices on a

conical delta wing.

The analysis in this chapter follows after Roberts (ref.63). Although in our case there

is an external flow, the jet velocity is assumed to be much higher than the velocity of
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the outer field (i.e. vj >> v_). Therefore the jet will be treated as issuing into quiescent

surroundings. In .addition, since the thickness of the boundary layer and the width of the

jet are small compared to the local radius of the cone (i.e., 6/R, bj/R << 1) curvature

effects will also be neglected.

10.2 The Flow Model

The profile of the wall jet is shown in fig(10.2). The jet consists of two parts ; an

inner flow adjacent to the wall having a highly non-linear velocity profile characteristic of

a turbulent wall flow, and an outer flow having a velocity profile typical of a free turbulent

plane jet. The jet emerges from a point source into the fluid and spreads, increasing its

width and decreasing its velocity due to turbulent diffusion in the jet and friction at the

surface. At a distance 77downstream of the jet exit the velocity vj can be expressed as

(io.i)

where v,_ is the maximum velocity, occuring at _ = (re(r/), and bj = bj(r/) is the half width

of the jet (at which point vj = v,,,/2). The velocity profile in the outer flow (( > (_) is

assumed to take the form

= L j for <> ¢. (1o.2)

This velocity profile is suggested by the classical free jet solution by Tollmien, modified to

give vj = v_ at ff = (,_. The constant kj is determined such that v1 = v,,_/2 at _ = bj.

Thus
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The velocity profile for the inner flow is assumedto depend on the variable ((/(m) 1/"

(where n = 7), as suggested by turbulent wall flow, and is chosen to give a maximum value

vj = v,_ at ( = (m. Thus

vj -- v,_ 2 - (10.4)

The value of _,_ is determined by matching the second derivative of the velocity profiles

given by eqs(10.2) and (10.4). The result is written

_,_ -- bj(1 + kin) -1 (lo.5)

10.3 The Wall Jet Equations

In addition to the approximations mentioned in section (10.1) (i.e. that vj >> v_ and

bj/R << 1), the assumption is also made that the contribution of the shear stress at the

wall and the contribution of the wall layer momentum (_ < _,,_) to the overall momentum

balance are small. Under these assumptions we have :

continuity equation

Ov Ow

+ = o (lo.6)
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momentum equation

"_ + wE =-0-_ + (lO.7)

The pressure is imposed by the external flow, so that

I

The shear stress is determined from

a...pp= 0 (10.9)
a¢

v, Ov (10.9)
T='_

Using eqs(10.6) and (10.7) the integral form of the momentum equation is written

Co

_fdrI (v 2 + p)dC = --- (10.10)
0 0

Neglecting the pressure term and substituting the velocity profiles from eqs(10.2) and

(10.4) giv_

1 d (bjv_)--3kjC! (10.11)
v_.d_

In eq(10.10) the contribution to the integral for the region 0 < _ < _,_ has been

ignored since this is O(_/bj), i.e., O(1/n) where n is large, particularly for large Reynolds

number flows.
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Equation(10.11) indicates that the momentumin the wall jet is reducedby the action

of wall friction. However, for our purposes,the jet will travel only a very short distance

before separating, so it is reasonableto assumethat its momentum will remain constant.

bjv_ = cortst (10.12)

Having neglected curvature effects, eq(17) in ref.63 shows that the spreading rate of the

jet will be constant, equal to that for a wall jet along a plane surface, i.e.,

where

b=K (10.13)

K = 0.073 (10.14)

is an experimentally determined constant. It follows from eq(10.12) that the velocity of

the jet is reduced as 1/v_, i.e.,

v,_ ,C_/-_2 (10.15)

where the blowing coefficient is defined as the ratio of the jet momentum to that of the

external fiield, just outside the boundary layer

(10.16)=
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10.4 Wall Jet Separation

The only pressure gradient to which the jet is subject, after neglecting curvature

effects, is the one due to the external flow. An approximate relationship for the influence

of pressure gradient on wall shear stress for wall jets is

rn = r,,0 - K'C,_ (d_) (10.17)

where rn,0 is the shear stress at the wall with zero pressure gradient. From experiments by

Bradshaw and Gee (ref.55) it is known that

1
K ''_ - (10.18)

--4

Thus separation (where r n = 0) occurs when the following condition is satisfied

Table(10.1) compares the separation criteria for the boundary layer and the wall jet. The

right side is approximately the same for both cases. The wall jet, however, has greater

momentum near the wall. As a result, its characteristic dimension (distance of maximum

velocity from the wall) is smaller than the corresponding characteristic dimension of the

boundary layer (momentum thickness). In addition, higher velocities near the wall imply

larger velocity gradients which result in greater shear stress at the wall. Thus, the first

factor on the left side of the separation criterion is much smaller for the wall jet than for

the boundary layer. As a consequence, the pressure gradient at separation is much larger

for the wall jet and enables it to go farther against a'n adverse pressure gradient.

- 64 -



Using the following definitions

,,.0 (10.20)C/o - i 2
_Sv,n

p-poo (lO.21)
Cp_ 1 2

_-Suoo(1 + a 2)

, = aO,R (lO.22)

Re,, -- v,_ (10.23)
V

together with eqs(8.18b),(10.5),(10.13)and the experimental result(ref.63)

Cyo = O.0315Re[n °as2 _-- 0.004 (10.24)

which is valid for Re _- 0(104), the separation condition eq(lO.19) transforms into

21.527 V 2

(1+ o,_) (oc,,/o_)
C_ (10.25)

$

Equation(10.25) is plotted in fig(10.4). It isseen, that the blowing intensityrequired

for a given displacement of the lower separation point depends only on the state of the

boundary layer (i.e.whether itislaminar or turbulent),and isalmost independent of the

cone geometry and angle of attack, as isindicatedby the almost horizontal curves.
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10.5 Converged Solutions before and after Blowing

Figures(10.3a) and (10.3b) show the converged solutions for a cone with e = 5° at

- 30° for the two statesof the boundary layer (laminar and turbulent) before and after

blowing. The main observation, which reveals the beauty of the idea of blowing as a

means of controllingseparation,isthat very small blowing intensitiesare required to move

the separation points from their natural locations,as predicted by the viscous/inviscid

scheme in chapter 9, to points very close to the leeward generator. For both statesof the

boundary layer,blowing causes the separation to occur at a largerangle from the windward

stagnation line,thus moving the vortices closer to the surface of the body toward the

leeward generator. Smaller blowing intensityisrequired for the turbulent boundary layer

for the same finalconfiguration.This isexplained by the fact that the separation for the

turbulent boundary layer occurs naturally at a larger angle, and therefore the required

A6_sissmaller.

10.6 Pressure Distribution

The modified pressure distributions for the configurations shown in fig(10.3) are plot-

ted in fig(10.5). It is seen, that blowing has the following effects :

(i) It pushes the vortices (and as a result the vortex suction) closer to the leeward

generator, thus closing the flow field. In the limit, as separation is suppressed completely,

the results from the Jones theory are recovered.

(ii) It reduces the size of the separation bubble. This is shown by the diminishing of

the flat portion of the curves which represents the distance between the upper and lower

separation points.
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(iii) It weakensthe vortices (as is shownfrom the diminishing vortex suction) by

pushing them clo.serto the surface. In effect, this reducesthe vortex lift contribution,

which is equivalent to reducing the angleof attack. Thus, it is seenthat blowing allows

control of the lift on a highly maneuverableaircraft without changingits attitude.

10.7 Lift

The relation between the lift and blowing coefficients is shown in fig(10.6). The fact

that the curves drop more sharply as the relative incidence increases indicates that for a

given body (e) blowing becomes more effective as angle of attack increases.

The limit of all the curves is of course the Jones lift. Although it may seem impossible

to eliminate separation completely, from fig(10.6) one may pick off each curve the point

where the lift is within 5% of the Jones value. For all practical purposes, the vortex lift

can then be neglected.

As a reminder, it is repeated that at the high angles of attack to which some of the

highly maneuverable aircraft operate, the main problem is to eliminate any asymmetries

of the vortex system, vortex breakdown, or both. Thus, the desire to sacrifice some of the

vortex lift in order to achieve this goal is not surprising. As Wood (ref.64) has pointed out,

however, there is an exception to the rule that blowing reduces the vortex lift. This occurs

when, for a given configuration, blowing stabilizes _the vortex system which otherwise would

have broken down.
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II. EPILOGUE

11.1 Discussion

It is well known from previous studies that the "single line-vortex" model has the

following disadvantages when used to represent the inviscid outer field about bodies at

high angle of attack :

(i) The position of the vortices is not very accurate. This should be expected, since

the vortices are represented only globally in this model. To clarify this point a little further,

we should remind ourselves that, in reality, the vorticity which is shed from the surface of

conical bodies at incidence is distributed and not concentrated as the "single line-vortex"

assumes. More complicated models which take this fact into account (see for example

Smith ref.29) give vortex core locations which agree much better with experimental obser-

vations. The predicted vortex locations are even worse when asymmetric vortex solutions

are sought. Nevertheless, as Smith has pointed out (ref.8) the crude vortex locations given

by the "single line-vortex" model are very useful as initial guesses for the more complex

numerical "rolled-up core" model.

(ii) The vortex lift is overestimated. This again is the result of a very strong suction

generated on the upper surface of the body under the locations of the vortices. For delta

wings, however, the non-linear lift is not a large part of the total unless the aspect ratio

is very small, hence the error in the total lift is not too serious. The "rolled-up core"

model also shows some suction, but the pressure peaks are much lower thus giving better

agreement with experiments.

(iii) Vortex solutions cannot be found below a minimum value of the relative incidence,

which depends on the thickness of the wing and the location of separation. Experimental
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observations(refs.34-39), partially verify this result, since at small anglesof attack the

body radius, as it growsin the longitudinal direction, prevents the departure of free vor-

tices. When the angle of attack becomes sufficiently high, the vorticity in the boundary

layer accumulates along generators on the upper surface of the body. The vortices gener-

ally do not separate from the body until some higher angle of attack is reached. However,

the "rolled-up core" model gives solutions for much lower values of the relative incidence.

The present work shows that, as long as the separation occurs on the upper surface, the

minimum values of the relative incidence below which solutions do not exist for the "single

line-vortex" model are reasonable and agree well with experiments (see Bryson ref.20).

Trouble occurs when solutions are sought for which the separation takes place on the lower

surface of the body. First, the straight feeding sheet has to pierce through the wing in

this case, and this is physically impossible. Second, as the angle of attack decreases the

vortex approaches the separation point and inevitably comes around the leading edge in

which case the feeding sheet assumes an almost horizontal position. When this happens,

the force balance between the vortex and its sheet is no longer possible, and as a result no

solutions can be found.

(iv) The pressure distribution is poorly predicted by this theory, principally because

the vorticity in the feeding sheets is neglected. On the body surface, the pressure jumps at

the point where the vortex sheet emanates. This is also physically impossible. In reality

the vortex sheet adjusts its position and shape so that it coincides with a three-dimensional

stream surface. Since the normal velocity across such a surface is zero, the force on the

vortex sheet is zero as well. In this model, however, the pressure jump is necessary to

create the force on the vortex sheet which balances the force on the vortex.

Regarding the boundary layer solution for conical bodies the following may be said :

the agreement of the predicted separation points with experiments is very good. Although

this might have been expected when the terms dropped out of the cross-flow momentum
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equation werefound to be small, there wasstill the questionof how an unrealistic pressure

jump resulting from the "single line-vortex" modelwould affect the boundary layer solu-

tion. Fortunately, becausethe lower boundary layer separateswell before the point where

the vortex sheetemanates(for the inviscid solution), the calculation of the boundary layer

takesplace in a regionwhich is not affectedmuchby the pressurejump acrossthe vortex

sheet.

11.2 Conclusions

(i) The "single line-vortex" model is limited in its accuracy but is adequate for the

initial investigation of vortex flow control by tangential blowing.

(ii) Displacement of the vortex separation has been shown to influence the location

and strength of the vortices for both flat plate and elliptical cross-section conical bodies.

(iii) The three-dimensional boundary layer over a circular cone has been analyzed. A

method analogous to the Karman/Pohlhausen technique has been used to solve the cross-

flow momentum equation, and the predicted separation lines agree well with experiments.

(iv) Blowing tangentially from slots located symmetrically along cone generators near

the point of cross-flow separation is an effective way to control vortex location and strength.

For sui_ciently large blowing the dependence on vortex lift can be drastically reduced, and

the effects of flow asymmetries may be made negligible.

- 70 -



11.3 Recommendations for Further Research

Additional work using an improved model should be undertaken in the following areas

of the present model :

(i) Inviscid outer field : A better representation of the vortex sheets is desirable

in order to get more accurate vortex positions and eliminate the pressure jump on the

surface of the body. In addition, inclusion of the secondary vortices which were mentioned

in section(1.1) may indirectly affect the main vortex parameters by influencing the locations

of separation due to their close proximity on the surface.

(ii) Boundary layer : Two improvements are desirable in the boundary layer model.

The first is an extension to non-circular cross-sections, and the second involves asymmet-

rical vortex configurations. The first may be accomplished by approximating the metric

coefficients for very thin elliptical cross-sections. For the second a two-parameter integral

method is necessary in order to match the pressure at the edges of each separation bubble

(right and left) simultaneously.

(iii) Wall Jet : If blowing around leading edges with very small radius of curvature

is desired (thin elliptical cross-section), then curvature effects must be included as is done

in ref.63. Control of asymmetrical vortex shedding could also be analyzed in a similar

manner provided that an appropriate boundary layer model is devised (see discussion in

item (ii) above).
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VORTEX ASYMMETRY I

I VORTEX BURST]

Figure 1.1 Model of F-5F at a = 40 °, in Northrop water tunnel. The vortex system

is asymmetric, and the lower vortex has burst at some point over the wing. [G.E.Erickson,

W.P.Gilbert : "Experimental Investigation of Forebody and Wing Leading Edge Vortex

Interactions at High Angles of Attack" AGARD CP-342, No.ll, July 1983]
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Secondary Primary
Vortex Vortex

Figure 1.2 Vortex formation over a slender delta wing at incidence.
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a. "Rolled-up core" model.

b. "Multiple line-vortex"model.

Co "Single line-vortex" model.

Figure 2.1 Three models representing vortex separation

in the cross-plane of a conical body.
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Figure 3.1 A flat delta wing at incidence.

Z

Y

Uoo_

Figure 3.2 Schematic of the streamlines in the cross-plane

of a flat delta wing at incidence with attached flow.
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a. z-plane

b. _-plane

Figure 4.5 Contours of integration for the normal force.
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Figure 6.2 Schematic of the details in the cross-plane.
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Figure 6.3 Loci of vortex positions

for a delta wing with elliptical cross-section (b/a = 0.05).
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Figure 6.7 Contours of integration for the normal force.
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Figure 7.2 Loci of vortex positions on a circular cone.
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Figure 8.1 Secondary flow on a cone at incidence.

(a) Growth of 2-D BL on a plane.

(b) BL growth on a transversely curved surface.

Figure 8.2 Streamline divergence producing a thinner BL.
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image vortices

Figure 8.3 The mechanism of vortex coalescence within the BL.

Figure 8.4 Coordinate system for the BL analysis on a circular cone.
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Figure 9.1 Schematic of BL separation

in the cross-plane of a circular cone.
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Figure 10.1 Schematic of controlled BL separation
with a wall jet in the cross-plane of a circular cone.
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Figure 10.2 Wall jet profile.
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Table 6.1 Summary of scaling laws for displaced separation.

vortex y-coordinate

vortex z-coordinate

vortex strength

vortex lift

FLAT PLATE ELLIPSE (b/a = 0.1)

OVERALL LIFT IS OF THE FORM :
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Table 8.I Analogy between 2-D and conical BL.

momentum

r0/0 =

first

A=

second

K=

third

g= f(g)

solution

02 =

E

2-D

equation

v2(dO1/dx)+

shape factor

(62/v)(dve/dx)

shape factor

shape factor

CONICAL

_,_(o0=/o,7)+
v.(62+ 20a)[(&./o_) + (_u./R):

(6U_)[(&o/0_)+ (eue/a)]

(O===/a=)A

(0.4n, lErv_) _oEr_v_drl

exp[6e_o(U,/v,)drl]
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APPENDIX 1

Complex Potential for an Expanding Ellipse

In ref.4, the complex potential for an expanding ellipse is given by

_,(_) = _.bo(z) + ----uoo dS In a + v/_ - c:
2_r dx 2

(A1.1)

For an elliptical cone the following equations relate the geometrical variables

S(x) = 7rab (A1.2)

a :xta42g--_xg (A1.3)

b = xtan6 __ x6 (A1.4)

Differentiating eq(A1.2) and using eqs(A1.3) and (A1.4) yields

dS

dx " 27rx_6 = 27ra6 = 27rbe (A1.5)

The parameter bo(x) is defined by
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bo(x) = -ao(x)in '/1
M_

2
l f dao. . 1 l[-dao l2 .._-mtz-¢ld_+sj-- _- n(_-z)@

0+ x

- lao(O+ )lnx 1-- _ao(1-) ln(1 -- x)
(A1.6)

where

1 dS
ao( x ) = _ be21r dx

(A1.7)

dao 1 d2 S
B=m_,.,
dx 2_r dx 2 - e6

For incompres.sible flow M_ = 0, so the first integral in eq(A1.6) becomes

1

1 6/ln(x-_)d_= _e6x(lnx- 1)
0+

The second integral in eq(A1.6) may be written as

1-

le6 f in (_ - x)d_ = le6(1 --x)[ln (1 --x) --1]

Finally, for the last two terms in eq(A1.6) we have

ao(0 +)= lira ao(x)=0
z--_O+
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ao(1-) = lim ao(x) = e6
x-*l-

Thus, eq(A1.6) reduces to

(A1.8)

Substituting now eqs(A1.5) and (A1.8) into eq(Al.1), the complex potential for an ellipse

that expands in a conical manner is obtained

_._o__--_{_[_o2_-_)-_]+_-}+ _ + v'_'- d
uo_be In (A1.9)

2
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APPENDIX 2

Distance around the Edge of an Ellipse

The distance of the separation point from the leading edge of an elliptical cross-section

may be expressed by the following integral

rl = f d_ = f _/dyS + dz 2 (A2.1)

Here, y and z are related by

y2 z s
aS + _ = 1 =_ (A2.2)

y b2
dz = ----_dyz (A2.3)

_ = Ysa_ (.42.4)
z 2 bS(a s _ yS)

Substituting the above expressions into eq(A2.1) gives

a-6_ . b2 y_2
77= / il + aS aS ys dy (A2.5)

Equation(A2.5) can be simplified, since a = 1, and the result is
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1-5y . y2

rl= / 71+b2_"""_dyl-y"
1

(A2.6)

or, since c2 -- a 2 -- b 2 1 b2

I-6_ ,
[ 11 - c2y 2

71= j V i"-'-_ ,dy
1

(A2.7)

In order to avoid the evaluation of the elliptic integral of the second kind, the integrand

will be simplified further in the following manner

1 - c2y 2 _ (1 + cy)(l --cy) ,__(I + c)(l - cy) (A2.8)

1 - y2 (I + y)(l - y) 2(1 - y)

The last equality follows because close to the leading edge y -_ 1.

Note that the above expression is valid for all thicknesses, i.e., from the flat plate case

(c - 1) to the circle case (c = 0). Substituting eq(A2.S) into (A2.7) yields

I--6_ ,--

1

(A2.9)

Integration by parts gives an approximate expression for the distance of the separation

point from the leading edge of an elliptical cross-section, as a function of 6_

_{ c-1 [c-c6_,-l+q(1-c+c6_,)c6y ]2}Tl=-- -- q(l-c+c6y)6_+_in (1-c)(1-c+c6y) (A2.10)
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APPENDIX 3

Evaluation of the Derivative dx/da

For the term X,2 in eq(6.2) the derivative with respect to z can be evaluated directly from

- 1 } (A3.1)2(1 - x)

For the rest of the complex potential (Xcf + Xsl), we have

dx OX dO Oxcf d81 OX._f d01 OX_f dk OXc] dR OX,I db (A3.2)
d-'_ = O"'ffd"ff + 081 da + 081 "_a + Ok da + OR da + Ob da

and since 81,01 (or al, al), k, a and b are all linear functions of z

dS.-.L= 0--1 (A3.3)
da a

d0--2-_= 0-2-_ (A3.4)
da a

dR R (A3.5)
da a

db b
-- = - (A3.6)
da a
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Equation(6.9) can be solved for the vortex strength

2

k = (os+ _1)(o,- o1)(o_1- R2)(0_01+ R ),_
e_(o,+ g,)(R_- o1_1)

(A3.7)

and differentiation with respect to a gives

dk k

da a
(A3.8)

In a similar manner, differentiating eqs(6.1) and (6.3) gives the following expressions

°' )O01- R _ + u_b_
(A3.9)

oxo__,k( _ o ) k001 0 - 01 001 + R 2 + z0_
(A3.10)

001 _ -t- 001 -- R 2 - 01
(A3.11)

o1(om01) (001+ R_) (A3.12)

OX_I 2Ru_a

OR 0 12zkR 001 + R 2

- 135 -

1

+ 001 - R _)
(A3.13)



c_Xsl
-- = Uooeln8
ab

(A3.14)

Finally, from fig(2.2)

dO dO dc c2

da dc da 2av'_ - c2
(A3.15)

 el(o) (A3.16)
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APPENDIX 4

Three-Dimensional Boundary Layer Equations

A4.1 Equations

Using an orthogonal system, which is not less general but simplifies matters consid-

erably, the expression for a general element of length, is given by

(ds) 2 - h_(d_) 2 + h_(drt) 2 + h23(d¢) 2 (A4.1)

where the metric coefficients are in general functions of all three coordinates

hi = hl((,_, ¢)

h3 = h3(_,_,¢)

and 77 lie and are defined on the surface over which the boundary layer is flowing, while

extends into the layer.

When the surface is regular, and not excessively curved in comparison with the bound-

ary layer thickness

hi = hl(_, 77)
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h_ = h_(_,_)

h3= h3(_,7)

If (_, 77,_) are known functions of some Cartesian system (x, y, z), then

= \ox] + \oy] + \ ]Yz
(A4.2a)

(A4.2b)

The boundary layer equations in a general system of orthogonal curvilinear coordinates

like the one just described, can be written as follows :

continuity equation

(A4.3)

momentum equation in the _ - direction

u Ou + v Ou + w Ou + uv cob1 v 2 cOh2 _ 1 cOp+ 1 cOte (A4.4)
hi cO_ h2 Or/ h3 CO( hlh2 Or/ hlh2 0_ _ohl CO_ _h3 CO_

momentum equation in the 77 - direction
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momentum equation in the _ - direction

Op

0"_"-" 0 (A4.6)

For the derivation of the above equations, the flow has been assumed steady, incompressible

with neither body forces nor Coriolis acceleration terms. The pressure gradient components

may also be written as

20h_1 ap u_ Ou_ v, Ou_ u¢v_ Oh1 v_

_h-'_O'-_ = ha O_ h2 077 h_h_ Or! + h_h_ c9_ (A4.7)

20h_10p ue Ore ve cgv¢ u_v_ Oh2 u_

_h--;o-_= h, o_ - h_o_" h,h_O_+ hlh_O,7 (A4.S)

A4.2 Boundary Conditions

(i) At the surface of the body (C = 0), the "no-slip" condition is

u = v = w - 0 (A4.9)

(ii) At the outer edge of the boundary layer (C "* oo), the velocity should match that of

the external flow
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u --_ u,(_, r/) (A4.10a)

v --_ v,(_, r/) (A4.10b)

w _ 0 (A4.10c)

A4.3 Choice of the Coordinate System

The equations in section (A4.1) are complicated mainly because of the presence of

the metric coefficients hi, h2, h3 and their derivatives. It is therefore imperative that the

coordinate system is chosen in such a way as to simplify both the differential equations as

well as the boundary conditions.

A first simplification applicable in boundary layer studies, is to restrict the general

orthogonal system which was defined in section (A4.1), by setting

h3(_,r/) = 1 (A4.11)

which implies that ( represents an actual distance measured along a straight normal from

the surface. As a result, only the choice of the two remaining surface coordinates _ and r/

needs to be made.

References 45-48 have an extensive discussion on the various possibilities for the choice

of the two remaining coordinate axes. The problem which exists most of the times, is that

there is usually one coordinate system in which the boundary layer equations take the
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O

simplest form, and another one which offers the simplest boundary conditions. For the

circular cone for example, since it is a developable surface (i.e., it can be rolled out into a

plane without being stretched after suitable cuts have been made), a cartesian coordinate

system exists such that hi - h_ = 1. However, none of the coordinates of this system

lies along the cone generators so the simple "conical flow" boundary conditions are lost.

Thus, the best choice seems to be an orthogonal coordinate system consisting of geodesics

(surface curves connecting succesive points along the shortest route possible) and geodesic

parallels. Then, the metric coefficient for the coordinates which are geodesics becomes

hl(_,,/) = I (A4.12)

and eq(A4.1) now reads

(d_)_-= (d_)2 + h](d_)_+ (de)_ (A4.13)
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AP P ENDIX 5

Solution of the Boundary Layer Equation

A5.1 Laminar Boundary Layer

For the laminar boundary layer the shear stress is given by

Ov Ov

%L --" #-_ = OV'_
(A5.1)

If we define a dimensionless coordinate across the boundary layer

(A5.2)

then it may be written

v _-- f()_) __ al)_ 4- bl)_ 2 4- Cl _3 -1- dl)_ 4 for 0 < A < 1 (A5.3)

The constants al, bl, cl, dl will be evaluated from the boundary conditions.

The first boundary condition eq(A4.9), applied at ,k = 0 reduces eq(A4.5) to

Or, 1 01)

OC _ 077
(A5.4)

Combining now eqs(A5.1),(A5.4) and (A4.8) yields
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The first pressure gradient parameter may be defined in a manner analogous to that for

the two-dimensional boundary layer

A, - + _u_
- av \ 0,7 ]

Then eq(A5.5) reduces to

02V V

V_-_ = -vegA.

Evaluation of the second derivative on the left side by means of eq(A5.3) yields

1 (A5.7a)
bl = -_A,

The second boundary condition eqs(A4.10), applied at A = 1 gives v = v_, Ov/O¢ =

0 and 02v/O_ 2 = O. When these conditions are expressed in terms of eq(A5.3), yield

repsectively

f(1) = I =,. al + bl + Cl + dl -- 1 (A5.7b)

f'(1) -- 0 =*. al + 2b1÷ 3Cl -}- 4dl - 0 (A5.7c)
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f"(1) = 0 :_ bl + 3cl + 6dl = 0 (AS.Td)

Solving now the system of eqs(A5.7) gives

a 1 -- 2 + A.
6

(A5.Te)

C 1 = -2 +"
2

(A5.7f)

dt = 1 A,
6

(A5.7g)

Substitution of eqs(A5.7) into (A5.3) shows that

U

--=F(A)
U_

(A5.Sa)

V

-- = F(A) + A,G(A)
Ve

(A5.8b)

where the functions F and G are exactly the same as in the two-dimensional flow

F(A) = 1- (1- A)3(1 + A) (A5.ga)
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= (A5.9b)

Thus, the dimensionless quantities of interest will also have the same form as their two-

dimensional counterparts

1

_- -- (1 - F)dA = 0.3 (A5.10a)

1

62 /_- = (1 - F - A,G)dA = 0.3 - 0.00833A, (AS.10b)

1

81---!= /F(1 - F)dA6
0

= 0.11746 (A5.10c)

1

822 /= (F + A.G)(1 - f - A.G)dA = 0.11746 - 0.00106A.
0

- 0.00011A_ (A5.10d)

1

812 J-_- = (1 - f)(F + A,,G)dA = 0.11746 - 0.0036A,
0

(A5.10e)

1

82--!= f F(I - F - A,G)dA
6

0

= 0.11746 - 0.0047A, (A5.10f)

Notice that A, does not appear in the fight side of functions which depend only on the

axial flow, since there is no pressure gradient in the _ - direction.
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The friction coefficient is now defined by

r,
Cf_-_ 1 2 (A5.11)

from which it may be written

r,____6= r, 6v. 1_ 6v_ A, (A5.12)

Cross-flow separation occurs when % = 0, or, when A n

correspond to A, = +7.052.

Multiplying now eq(8.15) by (822lure) yields

= -12, while stagnation points

Rg Or/ +_ 2+_ \0r/ +eu_ = #v_ 6

which is identical in form with the corresponding equation for the _wo-dimensional bound-

ary layer, eq(10.26) in ref.40. Following the same procedure for its solution as in the

two-dimensional case, one may define the second pressure gradient parameter as

KnL -- Ru
(A5.14)

Combining now eqs(A5.6) and (A5.14) gives
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which, when combined with eq(A5.10d) yields

2K.L= 3 9 -- 15 144

The boundary layer shape factor is defined by

(A5.14b)

62 (A5.15)
H2L =-- _22

and using eqs(A5.10b)and (A5.10d) it can be written as

H2L = 0.3 - 0.00833A, = fl(K,L) (A5.15a)
0.11746 - 0.00106An - 0.00011A_

Equations(A5.10d) and (A5.12) also combine to give

_v, 6 "_ 5 15 144]

Now eq(A5.13) can be written as

1 d (822 _ fl(K,,L)] f2(K,,L) (A5.17)
2"_ \'_v ] v, + K,L[2 + =

and if the function F is introduced in a manner analogous to that for the two-dimensional

case

F( KnL ) = 2 f 2( K,TL ) -- 4K,7 L - 2K,TL f x( KnL )

15 144/ 315
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eq(A5.17) finally becomes

d (0222' _ F(K,L) (A5.19)
_R_) = ,-:

which is a non-linear ordinary differential equation for (8_2/Rv). The function F(K,L) can

be approximated by a straight line

F( K,1L ) = CL - dLK,TL A5.20)

where CL and dr. are constants. When this is done, eq(A5.19) transforms into

where

[ l v. u.]-_-+co_ (a_.-_)_+a_ =_. A5.21)

The integrating factor for eq(A5.21) is

coL
al]

exp[ZpL(rl)dr_ _aL--tL"
(A5.23)

where

EL =-- exp dL8 dr/ (A5.24)
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and

1 dr, ue
(A5.25)

Then the solution to eq(A5.21) is written as

71

cr, f vdL-1ELdrl

0 (A5.26)
_L -- vdeL_IE L

Using the dimensionless velocities deftned in eqs(8.17) the solution may be expressed in

the following way

17

RCLZ, ' 1 / ELVdL-ldrl (A5.27)822 = ELU_ V dL
0

where

(A5.2S)

The condition for separation in laminar flow is written in terms of the pressure _adient

parameters

A, = -12 =_ K,TL = -0.157 (A5.29)
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and from the definition of K.L in eq(A5.14) we get

ELVd n + eU ELV4L-ldr] = -0.157 (A5.30)
0

The constants CL and dL have the same values as for the two-dimensional laminar boundary

layer (i.e., CL = 0.47 and dL -- 6). These values may be substituted into eq(A5.30), and

the "separation criterion for laminar flow" can be expressed as

)}SCL =- E'_IV -6 dV + eU ELVSd_ = -0.334

0

(A5.32)

For sufficiently slender bodies and small angles of attack it may be assumed

u_ ---u¢¢ =*,U- _ 1.0 (A5.33)

SO

)}SCL = E'_Iv -6 _ + _ ELVSdrl = -0.334
0

(AS.32a)

where
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To avoid infinite valuesof EL at the reattachment points, the velocity will be approximated

by a linear expres.sion near these points

V = W0Lr/ where 030L = const (A5.34)

when this is done EL becomes

n dV dr1 ]EL= exp / V j
U 0

and since (drl/dV = 1/WoL = const the right side of the previous equation can be integrated

to give

EL = V (s_/w°z) (A5.35)

Finally eq(A5.32a) gives

1

SCL = -_ (A5.36)

which is the limit of SCL as r1 approaches a reattachment point.

A5.2 Turbulent Boundary Layer

The procedure for the solution of the boundary layer equations for turbulent flow is

similar to the one outlined in the previous section for the laminar case. The differences are
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mainly due to the fact that the turbulent boundary layer grows thicker than the laminar

one, as was explained in section (8.3)

For the turbulent case it is necessary to define, as in the two-dimensional case, the

following parameters

Ue022

Re,, = (A5.37)
v

K,_T -" Rv_ _, &l + eu_ (A5.38)

_2

H2T =--_ = gl(K,TT) (A5.39)

1Cf,7 = = (A5.40)
T_

Re-¼ g2( K,TT)

Substituting eqs(A5.37) through (A5.40) into (A5.13) yields after some algebra

1 d 0 _ 5 022,Re_su e (A5.41)
_-_( 22Re,_ ) = F(K,T) 4 ave

where

F(K,T) - 2.2592 - (3.25 + 2.2591)K,T (A5.42)

- 152 -



It must benoted that F(K,TT ) is again the same function as in the two-dimensional case,

and it may be approximated by a straight line

F(K.T) = CT -- dTK, T (A5.43)

When this is done, eq(A5.41) transforms into

d_ + OJT dT+ u, + = RCT (A5.44)

where

5

WT -- 822Re_ (A5.45)

The integrating factor for eq(A5.44) is

exp I/,, PT(rl)d_ = ETvd, r
(A5.46)

where

ET = exp
_tr Ue

and
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_- (_+_)_+----
Ve

dT dye

v_ dr#
(A5.48)

Then the solution to eq(A5.44) is written as

]RCT ETv_rdr/ + c2

(A5.49)
wr = ETV_r

or, using the same dimensionless terms defined by eqs(8.17) as well as CT = 0.016 and

dT = 4 (same values as for the two-dimensional boundary layer)

fET = exp 5.25e dr/

k _tr

(A5.50)

,,:=_:_r'.'_1:°o.o1<,,<ri.._,T._4<,,+,,,.,1 r _.,__1)

The constant of integration c2 may be determined by equating/922 from eq(A5.51) with its

value for laminar flow, both being evaluated at the transition point. This yields

I" r/it "1 1.125

c2--26.729y-o.125E_l.125V9.SiiELVSdr/I

L0 1

(A5.52)

Separation of the turbulent boundary layer occurs when K,T = -0.06 as for the

two-dimensionlal case. Using eqs(A5.38) and (A5.51) this condition translates to
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SCT - ETV5 + 6U ETV4dr/ + c2 = -3.75
(A5.53)

assuming again that U - 1, eqs(A5.47) and (A5.53) reduce to

ET -- exp 5.256

L 7)tr

(AS.47a)

SCT = ETV5 _ --t-6 ETV4d_7 + c2 -3.75
(A5.53a)

The linearity assumption for the velocity near reattachment points is employed again

V = woT_? where woT = const (A5.54)

and the result is now

JET = V 5"25(_/_°r) (A5.55)

Substitution of the above approximations into eq(A5.53a) yields

SCT = woT + 6
5(WOT + 6) + 0.256

(A5.56)

and since 6 is small, the second term in the denominator may be neglected ieaving
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1
SCT = - (A5.57)

5

which is the limit of SeT as 77approaches a reattachment point for a slender cone, assuming

that the boundary layer is turbulent from its start.
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APPENDIX 6

Program Listings

This appendix contains five main FORTRAN programs :

A. PROGRAM VORTEX-CIRCLE

B. PROGRAM V-CP ELLIPSE

C. PROGRAM V-CP CIRCLE

D. PROGRAM K-CL

E. PROGRAM BL

The function of each program, as well as the function of each subroutine within the main

programs, is explained with comments wherever is appropriate.
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PROGRAM VORTEX-CIRCLE

C

C

C

C

C

C

THIS PROGRAM SOLVES THE SYSTEM OF EQUATIONS CONSISTING OF

THE SEPARATION AND FORCE-FREE CONDITIONS, FOR THE RIGHT

VORTEX POSITION. A CIRCULAR CROSS-SECTION IS CONSIDERED,

AND THE VORTEX SYSTEM CAN BE EITHER SYMMETRICAL OR

ASYMMETRICAL.

C

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION H(10),RHS(10),WORK(10),X(10),XOLD(10),Z(10)

DIMENSION RJAC(10,10),OA(10,10),IPVT(10)

C OUTPUT

C

C X

C

IS THE SOLUTION OF THE SYSTEM IN VECTOR FORM

C RJAC

C RHS

C

C H

C ACC

C

IS THE JACOBIAN OF THE SYSTEM

IS THE RIGHT HAND SIDE OF THE EQ. : RJAC*H=RHS

IN VECTOR FORM

IS THE DIFFERENCE : XNEW-XOLD

IS AN ESTIMATE OF THE MACHINE ACCURACY

C INPUT

C

4O

41

42

C

OPEN (UNIT=6, FILE=' TTY: ' ,STATUS=" NEW ' )

CONTINUE

NDIM

N

NMAX

IS THE DECLARED ROW DIMENSION OF THE JACOBIAN

IS THE ORDER OF THE MATRIX

IS THE MAX ALLOWABLE # OF ITERATIONS

N=4

ND IM= 4

NMAX=25

WRITE (5, 40)

FORMAT( ' GIVE THE RATIO ALFA/EPSILON ')

READ (5, i00) AE

WRITE (5, 41)

FORMAT ( ' GIVE THE ASSUMED SEPARATION ANGLE ON THE RIGHT')

READ (5, i00) SEPARI

WRITE (5, 42)

FORMAT( ' GIVE THE ASSUMED SEPARATION ANGLE ON THE LEFT')

READ (5, I00) SEPAR2

C

C

INITIAL GUESS

50

51

52

WRITE (5, 50)

FORMAT( ' GIVE YI0 ')

READ (5, i00) X(1)

WRITE (5, 51)

FORMAT( ' GIVE ZI0 ')

READ (5,100) X(2)

WRITE (5, 52)

FORMAT( ' GIVE Y20 ')

READ (5, I00) X(3)

WRITE (5, 53)
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53

i00

C

FORMAT( ' GIVE Z20

READ (5, i00) X(4)

FORMAT (F)

,)

C

A=I.0D0

GP=3.141592654D0

SEPI=SEPARI*GP/180.0D0

SEP2=(180.0D0-SEPAR2)*GP/180.0D0

C

C

ESTIMATE MACHINE ACCURACY

ACC=I.0D0

ACC=0.SD0*ACC

ACCUmACC+I.0D0

IF (ACCU.GT.I.0D0) GO TO 140

PRINT INITIAL GUESS

DO 200 I=l,N

WRITE (5,150) I,X(I)

FORMAT(' X(',Ii,')=',Fl0.3)

CONTINUE

140

C

C

C

150

200

C

NITER-0

NCONV_0

C

C

C

LOOP FOR EACH ITERATION

250

260

C

CONTINUE

DO 260 I-I,N

XOLD (I)=X(1)
CONTINUE

FORM THE JACOBIAN MATRIX AND THE RHS VECTOR

CALL JACOB(NDIM, N, AE, SEPI,SEP2,X, RJAC, RHS)

FORMAT (lX, 4F15.8)

SOLVE THE SYSTEM RJAC*H=RHS

CALL DECOMP(NDIM, N, RJAC,COND, IPVT,WORK, OA, Z)

300

C

C

C

C

390

400

420

THE SYSTEM WILL BE SOLVED ONLY IF RJAC IS WELL CONDITIONED

CONDI-COND+I.0D0

IF (CONDI.EQ.COND)

GO TO 420

WRITE (5,400)

FORMAT(' MATRIX IS

GO TO 710

CONTINUE

CALL

GO TO 390

SINGULAR TO WORKING PRECISION. ')

SOLVE (NDIM, N, RJAC, RHS, IPVT, H)
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COMPUTE NEW VECTOR X

450

470

C

DO 450 I=I,N

x(1) =x (1) +H (1)

CONT INUE

NITER=NITER+I

WRITE (6,470) NITER,

FORMAT (IX, I3,8F9.5)

(X(I) , I=l, N)

C "

C

CHECK FOR CONVERGENCE

500

520

521

C

DO 500 I=I,N

IF (ABS ( (XOLD (I )-X (I ) )/XOLD (I ) ) .LE. I. E-5 )NCONV=NCONV+I

CONTINUE

IF (NCONV.EQ.N) GO TO 600

IF (NITER.LT.NMAX) GO TO 250

WRITE (5,520)

FORMAT (' SOLUTION DOES NOT CONVERGE ' )

WRITE (5,521)

FORMAT (' WITHIN THE SPECIFIED NUMBER OF ITERATIONS ')

GO TO 710

C

C

WRITE SOLUTION

6OO

65O

670

700

705

710

750

WRITE (5,650)

FORMAT(///,' THE SOLUTION OF THE SYSTEM IS : '//)

DO 700 I=I,N

WRITE (5,670) I,X(I)

FORMAT(' X(' ,Ii, ')"' ,F15.5)

CONTINUE

RlJDSQRT (X (1) **2+X (2) **2)

R2=DSQRT (X (3) **2+X (4) **2)

WRITE (5,705) R1, R2

FORMAT (2F15.5)

WRITE (5,750)

FORMAT (/,' DO YOU WANT TO CONTINUE ? (1 FOR YES-0

READ (6, *) ILOG

IF (ILOG. EQ. 1) GO TO 1

STOP

END

FOR'NO) >', $)

C

SUBROUTINE SPLIT(AE,SEPI,SEP2,YI,ZI,Y2,Z2,U,W, JF)

THIS SUBROUTINE SPLITS A COMPLEX FUNCTION INTO ITS

REAL AND IMAGINARY PARTS.

C

C

C

EXTERNAL F

REAL*8 YI,Y2,ZI,Z2,SEPI,SEP2,U,W

COMPLEX*8 SI,S2,V,F

SI=CMPLX (YI, Z1)

S2=CMPLX (Y2, Z2 )

V=F (AE, SEP1, SEP2, SI, S2, JF)

U=REAL (V)

W=AIMAG (V)

RETURN

END
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C

SUBROUTINE JACOB(NDIM, N, AE, SEPI,SEP2,X, RJAC,RHS)

THIS SUBROUTINE COMPUTES THE JACOBIAN OF THE GIVEN

SYSTEM OF EQUATIONS.

C

C

C

C

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION RJAC (N,N), RHS (N) ,X(N)

YI=X (i)

Zl=X (2)

Y2=X (3)

Z2=X (4)

DYZ=0. 001D0

CALL SPLIT(AE, SEPI, SEP2,YI, ZI,Y2,Z2,FR1,FII,I)

CALL SP LIT (AE, SEP 1, SEP2, Y1, Z 1, Y2, Z2, FR2, FI2,2 )

RHS (1 )=-FRI

RHS (2) =-FII

RHS (3) =-FP.2

RHS (4) =-FI2

C

C

CALCULATE THE DERIVATIVES WITH RESPECT TO Y1

C

YIN=YI+DYZ

CALL SPLIT(AE, SEP1,SEP2,YIN, ZI,Y2,Z2,FRIYI,FIIYI, I)

CALL SPLIT(AE, SEPI,SEP2,YIN, ZI,Y2,Z2,FR2YI,FI2YI,2)

RJAC (1, 1 ) ..(FRIY1-FR1) /DYZ

RJAC (2, I) -.(FIIYI-FII)/DYZ

RJAC (3, I) = (FR2YI-FR2) /DYZ

RJAC (4, i) = (FI2YI-FI2) /DYZ

C

C

CALCULATE THE DERIVATIVES WITH RESPECT TO Zl

ZIN=ZI+DYZ

CALL SPLIT(AE, SEPI,SEP2,YI,ZIN, Y2,Z2,FRIZI,FIIZI, I)

CALL SPLIT (AE, SEPI, SEP2, YI, ZIN, Y2, Z2, FR2Z 1, FT2 Z 1 r2 )

RJAC (1,2) - (FRIZI-FRI)/DYZ

RJAC (2,2) = (FIIZI-FII)/DYZ

RJAC (3, 2) " (FR2ZI-FR2)/DYZ

RJAC (4,2 )" (F I2 Z 1 -F I2 )/DYZ

CALCULATE THE DERIVATIVES WITH RESPECT TO Y2

C

Y2N-Y2 +DYZ

CALL SPLIT(AE, SEPI,SEP2,YI,ZI,Y2N, Z2,FRIY2,FIIY2,1)

CALL SPLIT (AE, SEPI, SEP2,YI, ZI,Y2N, Z2, FR2Y2, FI2Y2, 2)

RJAC (I, 3) = (FRIY2-FRI)/DYZ

RJAC (2, 3) = (FIIY2-FII)/DYZ

RJAC (3,3 )..(FR2Y2-FR2)/DYZ

RJAC (4, 3) -.(FI2Y2-FI2)/DYZ

C

C

CALCULATE THE DERIVATIVES WITH RESPECT TO Z2

Z2N-Z2+DYZ

CALL SPLIT(AE,SEPI,SEP2,YI,ZI,Y2,Z2N, FRIZ2,FIIZ2,1)

CALL SPLIT(AE, SEPI,SEP2,YI,ZI,Y2,Z2N, FR2Z2,FI2Z2,2)
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C

RJAC (1, 4) = (FRIZ2-FR1) /DYZ

RJAC (2, 4)-- (FIIZ2-FII)/DYZ

RJAC (3, 4) --(FR2Z2-FR2) /DYZ

RJAC (4, 4) = (FI2Z2-FI2) /DYZ

RETURN

END

C

COMPLEX FUNCTION F(AE,SEPI,SEP2,SI,S2,JF)

REAL*8 SEPI,SEP2

COMPLEX*8 SI,S2,CSI,CS2,SPI,SP2,CSPI,CSP2,Q1,Q2

COMPLEX*8 AI,A2,A3,A4,BI,B2,B3,B4,CI,C2,C3,C4

C0MPLEX*8 DI,D3,EI,E3,HI,H3,GI,G3,FI,F2

A=I.0

C

SPI=A*CMPLX (COS (SEPI), SIN (S_PI))

SP2=A*CMPLX (COS (SEP2), SIN (SEP2))

CS I-CONJG (S 1 )

CS2=CONJG (S2)

CSP IsCONJG (SP I)

CSP2=CONJG (SP2)

AI=I. 0+A**2/SPI**2

A2sl. 0+A**2 /SP2 *'2

A3=I. 0+A**2/CSP2 *'2

A4sl. 0+A**2/CSPI**2

BI=I. 0/(SPI-Sl) -CSI/(SPI*CSI-A**2)

B2=l. 0/ (SP2-Sl)-CSl/(SP2*CSI-A**2)

B3=I. 0/(CS2-CSP2) +S2/(S2*CSP2-A**2)

B4sl •0/(CS2-CSPI) +S2/ (S2*CSPI-A**2)

Cl='l. 0/(SPI-S2) -CS2/(SPI*CS2-A**2)

C2=I. 0/(SP2-S2) -CS2/($P2*CS2-A**2)

C3=I. 0/(CSI-CSP2)+Sl/(SI*CSP2-A**2)

C4"I •0/(CSI-CSPI) +Sl/(SI*CSPI-A**2)

DI=(2.0*CSI-CSPI)/A

D3= (SP2-2 •0"$2)/A

EI=I. 0+A**2/SI**2

E3=I. 0+A*'2/CS2"'2

HI---CSI/(SI*CSI-A**2)

H3=S2 / (S2 *CS2-A** 2 )

GI='I. 0/(SI-S2) -CS2/(Sl*CS2-A**2)

G3=I •0/(CS1-CS2) +Sl/(SI*CS2-A**2)

QI= (AI*C2-A2*Cl) / (B2*CI-BI*C2)

Q2= (A3*C4-A4*C3) / (C3*B4-C4*B3)

FI-- (0, I) * (QI*HI-Q2*GI+EI) + (DI-A/SI) /AE

F2= (0, I) * (Q2*H3-QI*G3+E3) + (D3+A/CS2) /AE

IF (JF.EQ.1) F=FI

IF (JF.EQ.2) F=F2

RETURN

END
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C

SUBROUTINE SOLVE (NDIM, N, A, B, IPVT, X)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

1

C

C

C

I0

20

C

C

C

30

4O

5O

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION A(NDIM, N),B(N),IPVT(N),X(N)

SOLUTION OF LINEAR SYSTEM, A*X=B

DO NOT USE IF DECOMP HAS DETECTED SINGULARITY

INPUT..

NDIM = DECLARED ROW DIMENSION OF ARRAY CONTAINING A

N = ORDER OF MATRIX.

A = TRIANGULARIZED MATRIX OBTAINED FROM DECOMP

B = RIGHT HAND SIDE VECTOR

IPVT = PIVOT VECTOR OBTAINED FROM DECOMP

OUTPUT..

X = SOLUTION VECTOR, X.

INTEGER KB, KMI, NMI, KPI, I, K,M

REAL T

DO 1 I-.I,N

X(I)=B(I)

CONTINUE

FORWARD ELIMINATION

IF(N.EQ.I) GO TO 50

NMI=N-1

DO 20 K-.I,NMI

KP l=K+l

M_IPVT (K)

T_X (M)

X (M) =.X (K)

X (K) =-T

DO 10 I-KPI,N

X(1) =X (I) +A(I,K) *T

CONTINUE

CONTINUE

BACK SUBSTITUTION

DO 40 KB_-I,NMI

KMI=N-KB

K--KMl+l

X (K) =X (K) /A (K, K)

T=-X (K)

DO 30 I..I,KMI

X (I) =X (I) +A (I, K) *T

CONTINUE

CONTINUE

X(1) sX(1)/A(I, I)

RETURN

END
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C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

1

C

C

SUBROUTINE DECOMP(NDIM, N,A, COND, IPVT,WORK, OA, Z)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION A (NDIM, N) ,IPVT (N) ,OA (NDIM, N) ,WORK (N) , Z (N)

DECOMPOSES A REAL MATRIX BY GAUSSIAN ELIMINATION

AND ESTIMATES THE CONDITION OF THE MATRIX.

USE SOLVE TO COMPUTE SOLUTIONS TO LINEAR SYSTEMS.

INPUT • •

N-DIM = DECLARED ROW DIMENSION OF THE ARRAY CONTAINING A.

N =" ORDER OF THE MATRIX.

A = MATRIX TO BE TRIANGULARIZED.

OUTPUT..

A CONTAINS AN UPPER TRIANGULAR MATRIX U AND A PERMUTED

VERSION OF A LOWER TRIANGULAR MATRIX I-L SO THAT

(PERMUTATION MATRIX) *A = L*U

• COND = AN ESTIMATE OF THE CONDITION OF A.

FOR THE LINEAR SYSTEM A*X =B, CHANGES IN A AND B

MAY CAUSE CHANGES COND TIMES AS LARGE

IF COND+I.0 .EQ. COND , A IS SINGULAR TO WORKING

PRECISION. COND IS SET TO 1.0E+32 IF EXACT

SINGULARITY IS DETECTED.

IPVT = THE PIVOT VECTOR.

IPVT(K) = THE INDEX OF THE K-TH PIVOT ROW

IPVT(N) = (-1)**(NUMBER OF INTERCHANGES)

WORK , Z .. THESE VECTORS MUST BE DECLARED AND

INCLUDED IN THE CALL. THEIR INPUT CONTENTS ARE IGNORED.

THEIR OUTPUT CONTENTS ARE USUALLY UNIMPORTANT.

OA.. THE ORIGINAL N*N MATRIX

THE DETERMINANT OF A CAN BE OBTAINED ON OUTPUT BY

DET(A) = IPVT(N) * A(I,I) * A(2,2) * ... * A(N,N).

REAL EK, T, ANORM, YNORM, ZNORM

INTEGER NMI, I, J, K, KPI, KB, KMI,M

DO 1 I=I,N

DO 1 J"I,N

OA(I, J) =A(I, J)

CONT INUE

IPVT (N) =" 1

IF (N.EQ.I) GO TO 80

NMI -- N - 1
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C

C

I0

C

C

C

C

C

C

15

C

C

C

20

C

C

C

25

3O

35

C

C

C

C

C

C

C

C

COMPUTE 1-NORM OF A

ANORM = 0.0

DO 10 J=I,N

T=0.0

DO 5 I=I,N

T=T+ABS (A(I, J) )

CONTINUE

IF (T.GT.ANORM) ANORM-T

CONTINUE

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

DO 35 K=I,NMI

KP 1=K+ 1

FIND PIVOT

MmK

DO 15 I=KPI,N

IF (ABS (A(I,K)) .GT.ABS (A(M,K)) ) M-I

CONTINUE

IPVT (K) -- M

IF (M.NE.K) IPVT(N) =-IPVT(N)

T -. A (M, K)

A(M,K) -- A(K,K)

A (K, K) = T

SKIP STEP IF PIVOT IS ZERO

IF (T.EQ.0.0) GO TO 35

COMPUTE MULTIPLIERS

DO 20 I=KPI,N

A(I,K) = -A(I,K )/T
CONTINUE

INTERCHANGE AND ELIMINATE BY COLUMNS

DO 30 J=KPI,N

T_.A (M, J)

A (M, J) -.A (K, J)

A (K, J) =T

IF (T.EQ.0.0) GO TO 30

DO 25 I=KP1,N

A (I, J) =A (I, J) +A (I, K) *T
CONTINUE

CONTINUE

CONTINUE

COND = (1-NORM OF A)*(AN ESTIMATE OF I-NORM OF A-INVERSE)

ESTIMATE OBTAINED BY ONE STEP OF INVERSE ITERATION FOR THE

SMALL SINGULAR VECTOR. THIS INVOLVES SOLVING TWO SYSTEMS

OF EQUATIONS, (A-TRANSPOSE)*Y - E AND A*Z - Y WHERE E

IS A VECTOR OF +i OR -i CHOSEN TO CAUSE GROWTH IN Y.

ESTIMATE = (1-NORM OF Z)/(I-NORM OF Y)
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C

C

4O

45

5O

55

60

C

65

C

C

C

C

70

C

C

C

C

C

C
8O

C

C

C

9O

SOLVE (A-TRANSPOSE)*Y = E

DO 50 K=I,N

T=0.0

IF (K.EQ.I)GO TO 45

KMI=K- 1

DO 40 I=I,KMI

T=T+A (I, K) *WORK (I)

CONTINUE

EK=I. 0

IF(T.LT.0.0) EK=-l. 0

IF(A(K,K) .EQ.0.0) GO TO

WORK (K) =.- (EK+T) /A (K, K)

CONTINUE

DO 60 KB=I,NMI

K--N-KB

T=0.0

KP I=K+ 1

DO 55 I=KPI,N

T=T+A (I, K) *WORK (K)

CONT I NUE

WORK (K) =T

M=IPVT (K)

IF (M.EQ.K) GO TO 60

T=WORK (M)

WORK (M) =WORK (K)

WORK (K) =,T

CONT INUE

9O

YNORM-0.0

DO 65 I=I,N

YNORM=YNORM+ABS (WORK (I ) )

CONT INUE

SOLVE A*Z _- Y

CALL SOLVE (NDIM, N,A, WORK, IPVT, Z)

ZNORM=0.0

DO 70 I=I,N

ZNORM=ZNORM+ABS (Z (I ) )

CONTINUE

ESTIMATE CONDITION

COND=ANORM* ZNORM/YNORM

IF (COND.LT.I.0) COND=I.0

RETURN

1-BY-1

COND= 1.0

IF (A(1,1).NE.0.0) RETURN

EXACT SINGULARITY

COND=I. 0E+32

RETURN

END
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PROGRAM V-CP ELLIPSE

THIS PROGRAM COMPUTES THE VELOCITY AND PRESSURE DISTRIBUTIONS

ON THE SURFACE OF A CONICAL BODY OF ELLIPTICAL OR FLAT

CROSS-SECTION WITH SEPARATED FLOW.

COMPLEX CVI,CV2,CV3,CV4,CV5,CV6,G, GI,G2,Q,QA, QI,Q2,QF,S,SP,SPI

COMPLEX SI,S2,T, TA, TI,TIA, T2,T2A, TS,VCF,WT,WTI,WT2,WR, WB,WA, WQ

C DATA

C

I0

20

3O

40

5O

60

95

C

OPEN (UNIT=6, FILE=' TTY: ' ,STATUS='NEW' )

WRITE (5, I0)

FORMAT( ' GIVE THE CONE SEMIAPEX ANGLE ')

READ (5,95) EPSILO

WRITE (5,20)

FORMAT( ' GIVE THE THICKNESS RATIO ')

READ (5,95) B

WRITE (5, 30)

FORMAT ( ' GIVE THE ANGLE OF ATTACK ')

READ (5,95) ALFA

WRITE (5, 40)

FORMAT( ' GIVE THE DISPLACEMENT OF THE SP

READ (5,95) DY

WRITE (5,50)

FORMAT ( ' GIVE THE VORTEX POSITION ")

READ (5,95) Sl

WRITE (5,60)

FORMAT (/, ' WHICH SURFACE ?

READ (6,*) SURF

FORMAT (2F)

A=I. 0

PI=3.14159

,)

(-I FOR LOWER-+1 FOR UPPER) >', $)

C

AE=ALFA/EPSILO

C=SQRT(A**2-B**2)

R-(A+B)/2

ALF=ALFA*PI/180.0

EPS=EPSILO*PI/180.0

C

C

C

WHEN THE

WHEN THE

SP IS ON THE UPPER SURFACE DZ > 0

SP IS ON THE LOWER SURFACE DZ < 0

I00

C

DZ= (B/A) *SQRT (DY* (2*A-DY))

X=A/EPS

Y=0.0

CONTINUE

FOR THE UPPER SURFACE Z > 0

FOR THE LOWER SURFACE Z < 0

Z=SURF*B*SQRT (1- (Y/A) *'2)

S-Y+ (0, I) *Z

S 2 =CONJG (S 1 )

C

C

C

FOR THE UPPER SURFACE G > 0

FOR THE LOWER SURFACE G < 0
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C

C

C

150

IF (B.EQ.0.0) SUR=SURF

IF (B.GT.0.0) SUR=+I.0

G=SUR*CSQRT (S * * 2 -C* *2 )

GI=-CSQRT (SI*'2-C*'2)

G2=CSQRT (S2"'2-C*'2)

T= (S+G)/2

TI= (SI+GI)/2

T2= (S2+G2) /2

SPI=CSQRT ((A-DY) **2+2*DZ* (A-DY) * (0, i) -DZ**2-C**2)

SP=0.5" (A-DY+ (0, i) *DZ+SPI)

QI= (SP+T2) * (SP-TI)* (SP*T2-R**2) * (SP*TI+R**2)

Q2=SP**2* (TI+T2) * (R**2-TI*T2)

Q= (QI/Q2) *ALF

QF=I/(T-T1) -i/ (T+T2)+TI/(T*TI+R**2) -T2/ (T*T2-R**2)

TA=-C**2 / (2*A'G)

TIA=TI/A

T2A=T2/A

RA=R /A
BA=B/A

QA=Q/A

TS =-(1+S/G)/2

WT=- (0, i) *ALF* (I+R**2/T**2) - (0, I) *Q*QF+B*EPS/T

WTI= (0, I) *Q* (I/(T-T1) -T/(T*TI+R**2) +l/Tl)

WT2= (0, I) *Q* (I/(T+T2) +T/(T*T2-R**2) -I/T2)

CVI=CLOG (T-T1)

CVlR=REAL (CVI)

CVI I=AIM.AG (CVI)

IF (SURF.EQ.+I.0.AND.Y.GE. (I-DY))

DCVI I=ABS (CVI I-CVI I O)

IF (SURF. EQ. +i. 0 .AND .DCVII .GT. 4.0)

IF (SURF.EQ.+I.0.AND.Y.GE. (I-DY))

CVI=CMP LX (CVl R, CVl I )

CVl IO=AIMAG (CVl)

WRITE (5,150) Y, CVlI

CVlI=CVII-2*PI

CVII=CVlI+2*PI

CVlI=CVlI-2*PI

CV2=CLOG (T+T2)

CV3=CLOG (T*TI+R**2)

CV4sCLOG (T*T2-R**2)

CV5=CLOG (TI)

CV6=CLOG (T2)

WQ=.- (0, i) * (CVI-CV2+CV3-CV4+CV6-CVS)

WR=,2* (0, I) *R*ALF/T-2* (0, i) *Q'R* (I/ (T*Tl+R**2) +i/ (T*T2-R**2))

WB=EP S'CLOG (T)

WA=,WT*TA+WT 1 *T IA+WT2 * T2A+WQ*QA+WR* RA+WB* BA

VXS=EPS* (B/X) * (ALOG (2*SQRT (X* (I-X)) ) -I/(2* (I-X)) )

VX=EPS*REAL (WA) -VXS

VC F = WT *T S

VY=,REAL (VCF)

VZ =,-AIMAG (VCF)

VEL=SQRT (VX**2+VY**2+VZ **2 )

CP=,ALF *.2-2 *VX-VY**2-VZ**2

CPEE=CP/EPS *'2

WRITE (21,150) Y,CPEE

FORMAT (2FI0.3)

Y=Y+0.01

IF(Y.LE.I.0)GO TO i00

STOP

END
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C

PROGRAMV-CPCIRCLE

C
C
C
C
C
C
C

THIS PROGRAMCOMPUTES THE VELOCITY AND PRESSURE DISTRIBUTIONS

ON THE SURFACE OF A CIRCULAR CONE WITH SEPARATED FLOW

FOR THE CASE OF AN ASSYMETRICAL VORTEX SYSTEM.

FROM THE OUTPUT, ONE CAN ALSO DETERMINE

THE POSITION OF THE STAGNATION, SEPARATION AND

REATTACHMENT POINTS.

C

COMPLEX AI,A2,A3,A4,B1,B2,B3,B4,CI,C2,C3,C4

COMPLEX CSI,CS2,CSPI,CSP2,DI,D2,D3,D4,D5

COMPLEX DWA, DWS,DWSl,DWS2,DWS3,KI,K2,S,SI,S2,SPI,SP2

COMPLEX WA, WAI,WA2,WA3,WKI,WK2,WSI,WS2,WCSI,WCS2

C DATA

C

1

I0

20

30

40

50

60

70

I00

C

OPEN (UNIT=6, FILE=' TTY: ' ,STATUS="NEW ' )

CONTINUE

WRITE (5,10)

FORMAT ( ' GIVE THE SEMIAPEX ANGLE ')

READ (5,100) EPSILO

WRITE (5,20)

FORMAT ( ' GIVE THE ANGLE OF ATTACK ')

READ (5,100) ALFA

WRITE (5,30)

FORMAT ( ' GIVE THE SEPARATION ANGLE ON THE RIGHT

READ (5,100) SEPARI

WRITE (5, 40)

FORMAT ( ' GIVE THE SEPARATION ANGLE ON THE LEFT ')

READ (5,100) SEPAR2

WRITE (5,50)

FORMAT ( ' GIVE THE RIGHT VORTEX POSITION ')

READ (5,100) Sl

WRITE (5, 60)

FORMAT ( ' GIVE THE LEFT VORTEX POSITION ')

READ (5,100) S2

WRITE (5,70)

FORMAT ( ' GIVE THE INTERVAL STEP ')

READ (5,100) DETA

FORMAT (2F)

PI-,3. 141592654

,)

C

EPS-EPSILO*PI/180.0

ALF-ALFA*PI/180.0

SEPI-SEPARI*PI/180.0

SEP2-(180.0-SEPAR2)*PI/180.0

DET=DETA*PI/180.0

/%=1.0

SPI=A*CMPLX (COS (SEPI), SIN (SEPI))

SP2=A*CMPLX (COS (SEP2), SIN (SEP2))

CS 1-CONJG (S 1 )

CS2mCONJG ($2)

CSP I=CONJG (SP 1 )

CSP2-CONJG (SP2)
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150

C

C

C

C

C

C

ETA=-90.0

ET=ETA*PI/180.0

Y-A'COS iET)

Z=A*SIN (ET)

S=CMPLX (Y, Z)

AI=I+A**2/SPI**2

A2=I+A**2/SP2**2

BI--I/(SPI-SI) -CSI/(CSI*SPI-A**2)

B2=I/(SP2-SI) -CSl/(CSI*SP2-A**2)

CI=I/(SPI-S2) -CS2/(CS2*SPI-A**2)

C2=I/(SP2-S2) -CS2/ (CS2*SP2-A**2)

KI=ALF* (AI *C2 -A2 *CI ) / (B2 *CI-B 1 *C2 )

K2 =ALF *

WA2=-2 *

WA3=+2 *

WS I-'+KI

WS2=-K2

WCSI=+ (

WCS2=- (

(AI*B2-A2*BI) / (CI*B2-C2*B1)

(0, I) *KI*A/ (S*CSI-A**2)

(0, l) *K2*A/ (S*CS2-A**2)

* (0, I) / (S-Sl)

* (0, I) / (S-S2)

0, i) *KI*A**2/(CSI* (S*CSI-A**2))

0, I) *K2*A**2/(CS2" (S*CS2-A**2))

D 1=CLOG (S )

D2=CLOG (S-S2)

D2R=REAL (D2)

D2 I=AIMAG (D2)

IF (ET.GE.SEP2) D2I=D2I+2*PI

D2=CMP LX (D2R, D21 )

D3=CLOG (S-S 1)

D3R=REAL (D3)

D3IJAIMAG (D3)

IF (ET.GE.SEPI) D3I=D3I+2*PI

D3--CMPLX (D3R, D 31 )

D4-'CLOG (S-A**2/CS2)

D 4R=REAL (D4)

D 4I=AIMAG (D4)

DD4I=ABS (D4I-D4IO)

IF (DD4I.GT.4.0) D4I=D4I+2*PI

D4mCMPLX (D4R, D4I)

D4 IO=AIMAG (D4)

D5_.CLOG (S-A**2/CS I)

D5R=,REAL (D5)

D5 IIAIMAG (D5)

DD5I_-ABS (D51-D5IO)

IF (DD5I.GT.4.0) D5I=D5I+2*PI

D5"-CMPLX (D5R, D 51 )

D5 IO=-AIMAG (D5)

WKI=- (0, I) * (D3-D5)

WK2s+ (0, I) * (D2-D4)

DWS2=-KI* (0, I) * (I/ (S-S1) -CSI/(S*CSI-A**2) )

DWS3=+K2* (0, i) * (I/ (S-S2) -CS2/(S*CS2-A**2) )
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200

300

WAI=2*(0, I) *ALF*(A/S)
WA=WAI+WA2+WA3+EPS*D1
DWSI=-ALF*(0, I) * (I+A**2/S**2)
DWA=WA+WSI*S I+WS2*S2+WCSI*CSI+WCS2*CS2+WKI*KI+WK2*K2
DWS=DWS1+DWS2+DWS3+EPS* (A/S)
VX=EPS*REAL(DWA)
VY='+REAL(DWS)
VZ=-AIMAG(DWS)
CP='ALF**2-2*VX-VY**2-VZ**2
CPEE=CP/EPS**2
WRITE(6,200) ETA, CPEE

FORMAT (2F10 .3)

ETAzETA+DETA

IF (ETA.LE.90.0) GO TO 150

WRITE (5,300)

FORMAT(/,' DO YOU WANT TO CONTINUE ?(i FOR YES-0 FOR NO)>',$)

READ (6, *) ILOG

IF (ILOG.EQ.I) GO TO 1

STOP

END
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C

PROGRAM K-CL

C

C

C

C

C

THIS PROGRAM COMPUTES THE VORTEX STRENGTH K

AND THE LIFT COEFFICIENT CL

FOR A CONICAL BODY WITH ELLIPTICAL OR CIRCULAR

CROSS-SECTION, EXHIBITING LEADING EDGE SEPARATION.

COMPLEX S ,G1 ,G2 ,TH1 ,TH2 ,T, T1 ,QKI ,QK2 ,QK, FL

C DATA

C

C AE

C S

C B

C

C PARAM

C

C

: relative incidence

: vortex position in the physical plane

: ellipse semi-minor axis

(0 for a flat plate, 1 for a circle)

: = separation angle (for a circle)

= distance of separation from the leading edge

(for an ellipse or a flat plate)

i00

200

C

OPEN (UNIT=6, FILE='TTY:',STATUS ='NEW')

A=I.0

P=3.14159

CONTINUE

WRITE (5,200)

FORMAT (/,' Enter AE, S(complex), B, PARAM below.')

READ (6,*) AE, S, B, PARAM

C

C

JONES LIFT (linear with angle of attack)

CLI=2*P*AE

VORTEX LIFT (non-linear with angle of attack)

i0

20

C=SQRT (A**2-B**2)

R= (A+B)/2

GI=CSQRT (S*'2-C*'2)

G2=CSQRT (CONJG (S) *'2-C*'2 )

THI=S+GI

TH2 =CONJG (S )+G2

IF (B.LT.I.0) GO TO I0

THS=PARAM

THSRsTHS*P / 180.0

DY=A* (1-COS (THSR))

DZ=A*SIN (THSR)

GO TO 20

DY_-PARAM

DZ=B*SQRT (I- (A-DY) **2)

TI=A-DY+ (0, I) *DZ

T= (TI+CSQRT ((A-DY) **2+2* (0, i) * (A-DY) *DZ-DZ**2-C*C) ) /2

QKI= (0.25*TH2**2+T*TH2-R**2) / ((T+0.5*TH2) * (0.5*T*TH2-R**2))

QK2= (R**2+T*THI-0.25"THI*'2) / ((T-0.5*THI) * (0.5*T*THI+R**2))

QK=T**2/ (T**2+R**2) * (QKI-QK2)

VK=l/QK

IF (B.EQ.I.0) GO TO 250
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250
260

300

400

FL--(I+ (A+B)/ (A-B)) *GI+ (I- (A+B) / (A-B)) *S

GO TO 260

FL=2 *GI

CL2= (4*P*AE/ (QK*A**2)) *REAL (FL)

CL=CLl+CL2

WRITE (5,300) VK, CL

FORMAT (2F20.3)

WRITE (5,400)

FORMAT(/,' Do you want to continue _. (1 for yes - 0 for no) >',$)

READ (6,*) ILOG

IF (ILOG.EQ.I) GO TO 100

STOP

END
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PROGRAMBL

THISPROGRAMINTEGRATESTHECROSS-FLOW BOUNDARY LAYER EQUATION

FROM A STAGNATION (OR REATTACHMENT POINT) TO THE REGION WHERE

THE FLOW IS EXPECTED TO SEPARATE,

ON THE SURFACE OF A CIRCULAR CONE WITH SEPARATED FLOW,

FOR EITHER SYMMETRICAL OR ASSYMETRICAL VORTEX SYSTEMS.

IN ORDER TO SATISFY KELVIN'S THEOREM, THE VORTEX (KI-K2)

SUGGESTED BY THE CIRCLE THEOREM FOR THE ASSYMETRICAL CASE

HAS NOT BEEN INCLUDED.

THE VELOCITY AND PRESSURE AT EACH POINT ARE

CALCULATED BY SUBROUTINE VEL.

FOR THE CASE OF A LAMINAR BOUNDARY LAYER

THE SEPARATION POINT IS REACHED WHEN THE VALUE OF THE

FUNCTION SC (SEPARATION CRITERION) IS -0.334

FOR THE CASE OF A TURBULENT BOUNDARY LAYER

THE SEPARATION POINT IS REACHED WHEN THE VALUE OF THE

FUNCTION SC (SEPARATION CRITERION) IS -3.75

COMPLEX SI,$2

EXTERNAL EI,SCI

C DATA

C

ii

12

13

14

15

16

17

18

19

2O

OPEN (UNIT=6, FILE=' TTY: ' , STATUS=' NEW' )

CONTINUE

WRITE (5, 3)

FORMAT(/,' STATUS OF BL ? (0 FOR LAMINAR-1 FOR TURBULENT) >' , $)

READ (6,*) NBL

WRITE (5, 11)

FORMAT ( ' GIVE THE ANGLE OF ATTACK ')

READ (5,20) ALFA

WRITE (5, 12)

FORMAT ( ' GIVE THE CONE SEMIAPEX ANGLE ')

READ (5,20) EPSILO

WRITE "(5, 13)

FORMAT ( ' GIVE THE SEPARATION ANGLE ON THE RIGHT ')

READ (5,20) SEPAR1

WRITE (5, 14)

FORMAT( ' GIVE THE SEPARATION ANGLE ON THE LEFT ')

READ (5,20) SEPAR2

WRITE (5, 15)

FORMAT( ' GIVE THE RIGHT VORTEX POSITION ')

READ (5,20) S1

WRITE (5,16)

FORMAT( ' GIVE THE LEFT VORTEX POSITION ')

READ (5,20) S2

WRITE (5,17)

FORMAT( ' GIVE STAGNATION POINT LOCATION ')

READ (5,20) ETA0

WRITE (5, 18)

FORMAT( ' GIVE THE STARTING POINT ')

READ (5,20) ETA1

WRITE (5,19)

FORMAT ( ' GIVE THE INTERVAL STEP ')

READ (5,20) DETA
PI=3.141592654

FORMAT (2F)
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C

C

ALF=ALFA*PI/180.0

EPS=EPSILO*PI/180.0

SEPI=SE@ARI*PI/180.0

SEP2=(180.0-SEPAR2)*PI/180.0

DET=DETA*PI/180.0

ETI=ETAI*PI/180.0

C

C

C

APPROXIMATION OF SC IN THE NEIGHBORHOOD OF

THE STAGNATION POINT

22

23

24

C

ETA=ETA0

ETAN-ETA+DETA

ETN=ETAN*PI/180.0

ET=ETA*P I/180.0

IF (DETA.GT. 0.0)

IF (ETA. LT. ETA1)

GO TO 24

IF (ETA. GT. ETA1)

E=I. 0

IF (NBL.EQ. 0)

IF (NBL.EQ. i)

E0-E

SC0mSC

GO TO 26

GO TO 23

GO TO 25

GO TO 25

SC-I.0/6.0

SC-I.0/5.0

C

C

CALCULATE THE INTEGRAL FUNCTION : E

25

C

SCI'SC0

CALL ROME (ALF, EPS, SEP1,SEP2,S1,S2,ET1,ET,EIN)

IF (NBL.EQ.0) RC_6

IF (NBL.EQ.I) RC=4.25

E=EXP(RC*EPS*EIN)

C

C

EVALUATE THE DERIVATIVE : dV/d(eta)

CALL VEL(ALF, EPS,SEPI,SEP2,SI,S2,ET,V, CP)

CALL VEL(ALF,EPS,SEP1,SEP2,S1,S2,ETN, V1,CP1)

DVETA- (VI-V)/ABS (DET)

EVALUATE THE DERIVATIVE : dCp/d(eta)

DCPETA- (CPI-CP)/ABS (DET)

COMPUTE THE SEPARATION CRITERION

C

C

C

C

C

C

26

C

CALL ROMSC (ALF, EPS, SEP 1, SEP2, S 1, $2, ETI, ET, SCIN, NBL)

IF (NBL.EQ.0) M-6

IF (NBL.EQ.I) M-5

SC2= (DVETA+EPS) *SCIN/(E*V**M)

SC-SCI+SC2

CALL VEL (ALF, EPS, SEPI, SEP2, $1, S2,ET,V, CP)

C
PARAMm21.526*V**2/((I+ALF**2)*DCPETA)

3O
WRITE (5,30) ETA, SC,CP,PARAM

FORMAT (4F15.3)
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35
38
40

ETA=ETAN
IF (DETA.GT.0.0) GO TO 35

IF (ET.GT.SEPI) GO TO 22

GO TO 38

IF (ET.LT.SEP1) GO TO 22

WRITE (5, 40)

FORMAT (/,' DO YOU WANT TO CONTINUE ?

READ (6, *) ILOG

IF (ILOG.EQ.1) GO TO 1

STOP

END

(I FOR YES-0 FOR NO)>',$)

C

SUBROUTINE ROME(ALF,EPS,SEPI,SEP2,SI,S2,ETI,ET,RES)

C

C

C

C

C

C

C

C

C

C

THIS PROGRAM COMPUTES THE INTEGRAL FOR THE FUNCTION "E"

BY THE ROMBERG METHOD.

THE INPUTS ARE :

EI : THE FUNCTION TO BE INTEGRATED

ETI : THE LOWER LIMIT

ET : THE UPPER LIMIT

ERR : THE DESIRED ACCURACY

THE OUTPUT IS :

RES : THE RESULT

C

COMPLEX SI,$2

EXTERNAL EI

"ZR" IS THE ARRAY OF APPROXIMATIONS

DIMENSION ZR(10,10)

INITIALIZE THE INDEX AND COMPUTE THE FIRST APPROXIMATION

C

C

C

C

C

C

I=l

DEL=ET-ETI

EII_-EI (ALF,EPS, SEPI, SEP2, SI, S2, ETI)

EI2_.EI (ALF, EPS, SEP1, SEP2, $1, S2, ET)

ZR(1, i) =0.5*DEL* (EII+EI2)

C

C

C

C

C

THE MAIN LOOP.

THE FIRST PART COMPUTES THE INTEGRAL USING A 2J+l POINT

TRAPEZOID RULE. THE METHOD MAKES MAXIMAL USE OF THE

VALUES ALREADY COMPUTED.

i01

103

C

J=2** (I-1)

DEL=DEL/2

I=I+l

ZR(I, I) =0.5*ZR(I-1,1)

DO 103 K.-1,J

XR=ETI+ (2"K-1) *DEL

EI3=EI (ALF, EPS, SEPI, SEP2, SI, $2, XR)

ZR(I, 1) =ZR (I, I) +DEL*EI3

CONTINUE

C

C

DO THE RICHARDSON EXTRAPOLATION
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105

C

DO 105 K=2,I

ZR(I,K)=(4**(K-1)*ZR(I,K-I)-ZR(I-I,K-I))/(4**(K-1)-I)

CONT INU.E

C

C

ERROR CONTROL

ERR=0. 001

DIFF=ABS (ZR(I, I) -ZR (I, I-l) )

IF (DIFF.LT.ERR) GO TO 115

THE MAXIMUM NUMBER OF ITERATIONS ALLOWED IS 10
C

ii0

115

IF (I.LT.10) GO TO

WRITE (5,110)

FORMAT (' MORE THAN

STOP

RES=ABS (ZR (I, I) )

RETURN

END

i01

10 ITERATIONS REQUIRED, CHECK PARAMETERS')

SUBROUTINE VEL(ALF,EPS,SEPI,SEP2,SI,S2,ET,V, CP)

THIS PROGRAM EVALUATES THE CROSS-FLOW VELOCITY COMPONENTS

ON THE CROSS-SECTION OF THE BODY.

C

COMPLEX AI,A2,BI,B2,Cl,C2

COMPLEX CSI,CS2,CSPI,CSP2,DI,D2,D3,D4,D5

COMPLEX DWA, DWS,DWSI,DWS2,DWS3,KI,K2,S,SI,S2,SPI,SP2

COMPLEX WA, WAI,WA2,WA3,WKI,WK2,WSI,WS2,WCS1,WCS2

Aml.0

PI-.3. 14159

SPI--A*CMPLX (COS (SEPI), SIN (SEPI))

SP2-.A*CMPLX (COS (SEP2), SIN (SEP2) )

CS I=CONJG (S 1 )

CS2=CONJG (S2)

CSP I=CONJG (SPI)

CSP2sCONJG (SP2)

Y-.A'COS (ET)

Z=A*SIN (ET)

S=CMPLX (Y, Z)

AI*.I +A**2 / SPI**2

A2-1+A**2 / SP2"'2

BI-.I/(SPI-SI) -CSI/ (CSI*SPI-A**2)

B211/(SP2-SI)-CSI/(CSI*SP2-A**2)

CI_.I/(SPI-S2) -CS2/(CS2*SPI-A**2)

C2-I/(SP2-S2) -CS2/(CS2*SP2-A**2)

KI=,ALF * (AI*C2-A2*CI) / (B2*CI-BI*C2)

K2"ALF* (AI*B2-A2*BI) / (B2*CI-BI*C2)

WAl=+2* (0, l) *ALF* (A/S)

WA2--2* (0, I) *KI*A/(S*CSI-A**2)

WA3"+2* (0, i) *K2*A/(S*CS2-A**2)

WSI"+KI* (0, I) / (S-S1)

WS2"-K2* (0, I) / (S-S2)

WCSI=+ (0, i) *KI*A**2/(CSl* (S*CSI-A**2))

WCS2 =- (0, i) *K2*A**2/(CS2" (S*CS2-A**2))
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D1=CLOG(S)

C

D2=CLOG(S-$2)
D2R=REAL(D2)
D2I=AIMAG(D2)
IF (ET.GE.SEP2)D2I--D21+2*PI
D2=CMPLX(D2R,D21)

C

D3=CLOG(S-Sl)
D3R---REAL(D3)
D3I----AIMAG(D3)
IF (ET.GE.SEPI)D3I=D3I+2*PI
D3=CMPLX(D3R,D31)

C

D4zCLOG(S-A**2/CS2)
D4R----REAL(D4)
D4I=AIMAG(D4)
DD4I=ABS(D4I-D4IO)
IF (DD4I.GT.4.0) D4IzD4I+2*PI
D4sCMPLX(D4R,D41)
D4IO=AIMAG(D4)

C

D5=CLOG(S-A**2/CS1)
DSR=REAL(DS)
D5I=AIMAG(D5)
DD5I=ABS(DSI-DSIO)
IF (DD5I.GT.4.0) D5I=D5I+2*PI
D5--CMPLX(DSR,D51)
D5IO--AIMAG(DS)

WKI=-(0,I) * (D3-DS)
WK2=+(0, I) * (D2-D4)
DWSls-ALF* (0, i) * (I+A**2/S**2)
DWS2=-(0,i) *KI* (I/ (S-S1)-CSI/(S*CS1-A**2) )
DWS3--+(0, i) *K2*(i/ (S-S2)-CS2/(S*CS2-A**2))
WA--WAI+WA2+WA3+EPS*D1
DWA--WA+WS1 * S l+WS 2 *S2+WCS 1 *CS 1 +WCS2 *CS 2 +WKI *KI+WK2 *K2

DWS =DWS 1 +DWS 2 +DWS 3 +EP S* (A/S )

VX=.EP S *REAL (DWA)

VY=+REAL (DWS)

VZm-AIMAG (DWS)

V=SQRT (VY**2+VZ**2)

CP=ALF** 2-2*VX-VY**2-VZ** 2

RETURN

END

FUNCTION EI(ALF,EPS,SEPI,SEP2,Sl,S2,ET)

THIS PROGRAM CALCULATES THE INTEGRAND FUNCTION FOR "E"

COMPLEX SI, $2

CALL VEL(ALF,EPS,SEPI,SEP2,Sl,S2,ET,V, CP)

EI-l .O/V

RETURN

END
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C
SUBROUTINEROMSC(ALF,EPS,SEPI,SEP2,SI, $2,ETI, ET,RES,NBL)

C
C
C
C
C
C
C
C
C
C
C

THIS PROGRAMCOMPUTESTHEINTEGRALFORTHESEPARATION
CRITERIONBY THEROMBERGMETHOD.
THEINPUTSARE:
SCI : THEFUNCTIONTOBE INTEGRATED
ETI : THELOWERLIMIT
ET : THEUPPERLIMIT
EPS : THECONE SEMIAPEX ANGLE (IN RADIANS)

ERR : THE DESIRED ACCURACY

THE OUTPUT IS :

RES : THE RESULT

C

COMPLEX SI,S2

EXTERNAL EI,SCI

"ZR" IS THE ARRAY OF APPROXIMATIONS

DIMENSION ZR(10,10)

INITIALIZE THE INDEX AND COMPUTE THE FIRST APPROXIMATION

C

C

C

I=l

DEL=ET-ETI

SCII"SCI (ALF, EPS, SEPI, SEP2, S1, S2, ETI, ETI, NBL)

SCI2=SCI (ALF, EPS, SEPI, SEP2, Sl, $2, ETI, ET, NBL)

ZR (I, i) =0.5*DEL* (SCII+SCI2)

C

C

C

C

C

THE MAIN LOOP.

THE FIRST PART COMPUTES THE INTEGRAL USING A 2J+l POINT

TRAPEZOID RULE. THE METHOD MAKES MAXIMAL USE OF THE

VALUES ALREADY COMPUTED.

401

403

C

J=2**(I-l)

DELsDEL/2

I=I+l

ZR(I,I)=0.5*ZR(I-I,I)

DO 403 Ksl,J

XR-ETI+(2*K-1)*DEL

SCI3=SCI(ALF,EPS,SEPI,SEP2,SI,S2,ETI,XR, NBL)

ZR(I,I)=ZR(I,1)+DEL*SCI3

CONTINUE

C

C

DO THE RICHARDSON EXTRAPOLATION

DO 405 K'2,I

ZR(I,K)=(4**(K-1)*ZR(I,K-1)-ZR(I-1,K-1))/(4**(K-I)-I)

CONTINUE

ERROR CONTROL

405

C

C

C

ERR-0.001

DIFF=ABS(ZR(I,I)-ZR(I,I-I))

IF (DIFF.LT.ERR) GO TO 415
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C
C
C

THEMAXIMUMNUMBEROFITERATIONSALLOWEDIS I0.

410

415

IF (I.LT.10) GOTO

WRITE (5,410)

FORMAT (' MORE THAN

STOP

RES=ABS (ZR (I, I) )

RETURN

END

401

I0 ITERATIONS REQUIRED, CHECK PARAMETERS')

FUNCTION SCI(ALF,EPS,SEP1,SEP2,SI,S2,ETI,ET,NBL)

THIS PROGRAM COMPUTES THE INTEGRAND FUNCTION

FOR THE SEPARATION CRITERION.

COMPLEX SI,$2

EXTERNAL EI

CALL VEL (ALF, EPS, SEPI, SEP2, SI, S2,ET,V, CP)

CALL ROME (ALF, EPS, SEPI, SEP2, SI, $2, ETI, ET,EIN)

IF (NBL.EQ.0) RCm6

IF (NBL.EQ.I) RC=4.25

E=EXP (RC*EPS*EIN)

IF (NBL.EQ.0) M=5

IF (NBL.EQ.I) M=4

SCI=E*V**M

RETURN

END
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